Download Free Next To Leading Order Diphoton 2 Jet Production At The Lhc Book in PDF and EPUB Free Download. You can read online Next To Leading Order Diphoton 2 Jet Production At The Lhc and write the review.

We present next-to-leading-order QCD predictions for cross sections and for a comprehensive set of distributions in ??+2-jet production at the Large Hadron Collider. We consider the contributions from loop amplitudes for two photons and four gluons, but we neglect top quarks. We use BlackHat together with SHERPA to carry out the computation. We use a Frixione cone isolation for the photons. We study standard sets of cuts on the jets and the photons and also sets of cuts appropriate for studying backgrounds to Higgs-boson production via vector-boson fusion.
We present next-to-leading-order QCD predictions for cross sections and for a comprehensive set of distributions in [gamma][gamma]+2-jet production at the Large Hadron Collider. We consider the contributions from loop amplitudes for two photons and four gluons, but we neglect top quarks. We use BlackHat together with SHERPA to carry out the computation. We use a Frixione cone isolation for the photons. We study standard sets of cuts on the jets and the photons and also sets of cuts appropriate for studying backgrounds to Higgs-boson production via vector-boson fusion.
This book reviews the latest experimental results on jet physics from proton-proton collisons at the LHC. Jets allow to determine the strong coupling constant over a wide range of energies up the highest ones possible so far, and to constrain the gluon parton distribution of the proton, both of which are important uncertainties on theory predictions in general and for the Higgs boson in particular.A novel approach in this book is to categorize the examined quantities according to the types of absolute, ratio, or shape measurements and to explain in detail the advantages and differences. Including numerous illustrations and tables the physics message and impact of each observable is clearly elaborated.
A theory of the S-Matrix, starting from physically plausible assumptions and looking at the mathematical consequences.
Hadronic jets feature in many final states of interest in modern collider experiments. They form a significant Standard Model background for many proposed new physics processes and also probe QCD interactions at several different scales. At high energies incoming protons produce beam jets. Correctly accounting for the beam and central jets is critical to precise understanding of hadronic final states at the Large Hadron Collider. We study jet cross sections as a function of the shape of both beam and central jets. This work focuses on measuring jet mass but our methods can be applied to other jet shape variables as well. Measuring jet mass introduces additional scales to the collision process and these scales produce large logarithms that need to be resummed. Factorizing the cross section into hard, jet, beam, and soft functions enables such resummation. We begin by studying jet production at e + e- collisions in order to focus on the effects of jet algorithms. These results can be carried over to the more complicated case of hadron collisions. We use the Sterman-Weinberg algorithm as a specific example and derive an expression for the quark jet function. Turning to hadron colliders, we show how the N-jettiness event shape divides phase space into N +2 regions, each containing one central or beam jet. Thus, N-jettiness works as a jet algorithm. Using a geometric measure gives central jets with circular boundaries. We then give a factorization theorem for the cross section fully differential in the mass of each jet, and compute the corresponding soft function at next-to-leading order (NLO). We use a method of hemisphere decomposition, which can also be applied to calculate N-jet soft functions defined with other jet algorithms. Our calculation of the N-jettiness soft function provides the final missing ingredient to extend NLO cross sections to resunmmed predictions at next-to-next-to-leading logarithmic order. We study the production of an exclusive jet together with a Standard Model Higgs boson. Based on theoretical reasons and agreement between our calculation and data from the ATLAS collaboration, we argue that our results for the jet mass spectrum are a good approximation also for inclusive jet production and other hard processes.