Download Free Next Generation Optical Networks Book in PDF and EPUB Free Download. You can read online Next Generation Optical Networks and write the review.

TomorrowÕs networks will integrate optical transmission and IP to deliver unprecedented performance and manageability. Next Generation Optical Networks gives both electrical and data networking engineers essential information for building these networks. It reviews emerging standards such as MPLS and MPLmS, key optical technologies, and critical applications for enterprise, ISP, and carrier environments.
Optical networks have been in commercial deployment since the early 1980s as a result of advances in optical, photonic, and material technologies. Although the initial deployment was based on silica ?ber with a single wavelength modulated at low data rates, it was quickly demonstrated that ?ber can deliver much more bandwidth than any other transmission medium, twisted pair wire, coaxial cable, or wireless. Since then, the optical network evolved to include more exciting technologies, gratings, optical ?lters, optical multiplexers, and optical ampli?ers so that today a single ?ber can transport an unprecedented aggregate data rate that exceeds Tbps, and this is not the upper limit yet. Thus, the ?ber optic network has been the network of choice, and it is expected to remain so for many generationsto come, for both synchronousand asynchronouspayloads; voice, data, video, interactive video, games, music, text, and more. In the last few years, we have also witnessed an increase in network attacks as a result of store andforwardcomputer-basednodes. These attackshave manymaliciousobjectives:harvestsomeone else’s data, impersonate another user, cause denial of service, destroy ?les, and more. As a result, a new ?eld in communicationis becomingimportant,communicationnetworksand informationse- rity. In fact, the network architect and system designer is currently challenged to include enhanced features such as intruder detection, service restoration and countermeasures, intruder avoidance, and so on. In all, the next generation optical network is intelligent and able to detect and outsmart malicious intruders.
Fibre-to-the-Home networks constitute a fundamental telecom segment with the required potential to match the huge capacity of transport networks with the new user communication demands. Huge investments in access network infrastructure are expected for the next decade, with many initiatives already launched around the globe recently, driven by the new broadband service demands and the necessity by operators to deploy a future-proof infrastructure in the field. Dense FTTH Passive Optical Networks (PONs) is a cost-efficient way to build fibre access, and international standards (G/E-PON) have been already launched, leading to new set of telecom products for mass deployment. However, these systems only make use of less than 1% of the optical bandwidth; thus, relevant research is taking place to maximize the capacity of these systems, with the latest opto-electronic technologies, demonstrating that the huge bandwidth available through the fibre access can be exploited in a cost-efficient and reliable manner. Next-Generation FTTH Passive Optical Networks gathers and analyzes the most relevant techniques developed recently on technologies for the next generation FTTH networks, trying to answer the question: what’s after G/E-PONs?
Addressing the developments in optical networking, this guide covers the market for advanced optical communications products used by interexchange carriers (IXC)/internet service providers (ISP), incumbent local-exchange carriers (ILEC), competitive local-exchange carriers (CLEC), and cable-television (CATV) operators. The focus of this research report is on next-generation systems that include the new generation of synchronous optical network (SONET) systems, which offer more intelligence and lower cost than previous generations of such systems, and commercial products that have begun to embody the dream of an all-optical network. Both transmission and switching equipment are covered.
Optical and wireless technologies are being introduced into the global communications infrastructure at an astonishing pace. Both are revolutionizing the industry and will undoubtedly dominate its future, yet in the crowded curricula in most electrical engineering programs, there is no room in typical data communications courses for proper coverage of these "next generation" technologies. Optical and Wireless Communications: Next Generation Networks covers both types of networks in a unique presentation designed for a one-semester course for senior undergraduate or graduate engineering students. Part I: Optical Networks covers optical fibers, transmitters, receivers, multiplexers, amplifiers, and specific networks, including FDDI, SONET, fiber channel, and wavelength-routed networks. Part II:Wireless Networks examines fundamental concepts and specific wireless networks, such as LAN, ATM, wireless local loop, and wireless PBXs. This section also explores cellular technologies and satellite communications. Eventually, next generation networks will be as ubiquitous as traditional telephone networks, and today's engineering students must be prepared to meet the challenges of optical and wireless systems development and deployment. Filled with illustrations, examples, and end-of-chapter problems, Optical and Wireless Communications: Next Generation Networks provides a brief but comprehensive introduction to these technologies that will help future engineers build the foundation they need for success.
The key technology to delivering maximum bandwidth over networks is Dense Wave-length Division Multiplexing (DWDM) Describes in detail how DWDM works and how to implement a range of transmission protocols Covers device considerations, the pros and cons of various network layer protocols, and quality of service (QoS) issues The authors are leading experts in this field and provide real-world implementation examples First book to describe the interplay between the physical and IP (Internet Protocol) layers in optical networks
This in-depth, detailed reference presents for the first time a comprehensive treatment of recent advances in optical performance monitoring. Written by leading experts in the field, the book provides an overview of recent developments in the area and the role of OPM in future optical systems and networks. Detailed discussions of various advanced techniques are provided to illustrate their principles. FEATURES: - Presents the principles and applications of advanced OPM techniques, together with a comparative evaluation of their effectiveness in monitoring individual parameters, such as optical signal-to-noise ratio, chromatic dispersion, and polarization mode dispersion - Explains the principles of the various advanced optical signal processing techniques and their applications in OPM - Examines the role and applications of OPM in optical networks, including optical transport networks, coherent optical systems, and long-haul optical transmission systems - Discusses the current approaches of OPM in the global standard SDH/SONET This book is ideal for technical professionals and researchers who want to understand and evaluate advanced techniques in OPM and their impact on the practical design of next-generation optical systems and networks. - Provides a thorough and detailed discussion of the latest optical performance monitoring (OPM) techniques and their applications, presenting a comparative analysis of each method - Contains high-quality technical contributions from leading experts, covering both principles and practical aspects of advanced OPM techniques - Addresses challenges and opportunities related to OPM in next-generation reconfigurable optical systems and networks
This book introduces the reader to the optical switching technology for its application to data centers. In addition, it takes a picture of the status of the technology and system architecture evolution and of the research in the area of optical switching in data center. The book is organized in four parts: the first part is focused on the system aspects of optical switching in intra-data center networking, the second part is dedicated to describing the recently demonstrated optical switching networks, the third part deals with the latest technologies developed to enable optical switching and, finally, the fourth part of the book outlines the future prospects and trends.
bull; Master advanced optical network design and management strategies bull; Learn from real-world case-studies that feature the Cisco Systems ONS product line bull; A must-have reference for any IT professional involved in Optical networks
Optical Switching Networks describes all the major switching paradigms developed for modern optical networks, discussing their operation, advantages, disadvantages and implementation. Following a review of the evolution of optical WDM networks, an overview of the future trends out. The latest developments in optical access, local, metropolitan, and wide area networks are covered, including detailed technical descriptions of generalized multiprotocol label switching, waveband switching, photonic slot routing, optical flow, burst and packet switching. The convergence of optical and wireless access networks is also discussed, as are the IEEE 802.17 Resilient Packet Ring and IEEE 802.3ah Ethernet passive optical network standards and their WDM upgraded derivatives. The feasibility, challenges and potential of next-generation optical networks are described in a survey of state-of-the-art optical networking testbeds. Animations showing how the key optical switching techniques work are available via the web, as are lecture slides (www.cambridge.org/9780521868006).