Download Free Next Generation Nanobiosensor Devices For Point Of Care Diagnostics Book in PDF and EPUB Free Download. You can read online Next Generation Nanobiosensor Devices For Point Of Care Diagnostics and write the review.

This book reviews the potential of next-generation point-of-care diagnosis in healthcare. It also discusses the printed chip-based assay (Lab-on-a-Chip, Lab-on-a-PCB) for rapid, inexpensive biomarkers detection. The book presents the development of sensory systems based on the use of nanomaterials. It examines different biosensors for medical diagnosis using surface modification strategies of transducers. It presents electrochemical concepts based on different nanobiomaterials and nanocomposites for cancer theranostics. Notably, the book examines the recent advances in wearable, cost-effective hemodynamic sensors to detect diseases at an early stage. It further explores the combination of redox cycling and electrochemical detection to develop ultrasensitive and reproducible biosensors for point-of-care testing. Finally, the book summarizes the significant challenges in the point of care diagnostics and its future opportunities in healthcare. ​
This book examines the role of nanobiosensors in point-of-care applications for personalized healthcare and management. It begins by discussing various biomaterials that are used for the development of biosensors in medical diagnostics, and reviews advances in their fabrication and the miniaturization of biosensor devices for lab-on-chip analysis. In turn, it explores the rapidly evolving applications of nanomaterials in the context of biomaterial diagnostics. The book also explores the immense potential of biosensors in medical diagnostics, where they are increasingly being used to detect a wide range of biomolecules and biomarkers. In closing, it discusses the current challenges and outlines the future role of nanobiosensors in the development of next-generation point-of-care applications.
This book presents recent research on cancer detection methods based on nanobiosensors, which offer ultrasensitive point-of-care diagnosis. Several methods for diagnosing cancer have been discovered and many more are currently being developed. Conventional clinical approaches to detecting cancers are based on a biopsy followed by histopathology, or on the use of biomarkers (protein levels or nucleic acid content). Biopsy is the most widely used technique; however, it is an invasive technique and is not always applicable. Furthermore, biomarker-based detection cannot be relied on when the biomarkers are present in an extremely low concentration in the body fluids and in malignant tissues. Thus, in recent years highly sensitive and robust new cancer diagnosis techniques have been developed for clinical application, and may offer an alternative strategy for cancer diagnosis. As such, this book gathers the latest point-of-care cancer diagnostic methods and protocols based on biomedical sensors, microfluidics, and integrated systems engineering. It also discusses recent developments and diagnostics tests that can be conducted outside the laboratory in remote areas. These technologies include electrochemical sensors, paper-based microfluidics, and other kit-based diagnostic methods that can be adapted to bring cancer detection and diagnostics to more remote settings around the globe. Overall, the book provides students, researchers, and clinicians alike a comprehensive overview of interdisciplinary approaches to cancer diagnosis.
Nanobiosensors: Nanotechnology in the Agri-Food Industry, Volume 8, provides the latest information on the increasing demand for robust, rapid, inexpensive, and safe alternative technologies that monitor, test, and detect harmful or potentially dangerous foods. Due to their high sensitivity and selectivity, nanobiosensors have attracted attention for their use in monitoring not only biological contaminants in food, but also potential chemical and physical hazards. This book offers a broad overview regarding the current progress made in the field of nanosensors, including cutting-edge technological progress and the impact of these devices on the food industry. Special attention is given to the detection of microbial contaminants and harmful metabolotes, such as toxins and hormones, which have a great impact on both humans and animal health and feed. Includes the most up-to-date information on nanoparticles based biosensors and quantum dots for biological detection Provides application methods and techniques for research analysis for bacteriological detection and food testing Presents studies using analytical tools to improve food safety and quality analysis
This book presents the timeline of immunodiagnostics evolution, including advancements in immunological/nucleic acid probes, assay design, labelling techniques, and devices for signal transduction and acquisition. In the past few years, enzyme and nanocatalyst-based immune assays have undergone numerous modifications to enhance their sensitivity and potential for automation. Further, to reduce production costs and the use of laboratory animals, engineering small antibodies and nucleic acid probes (aptamers) has become increasingly popular in the development of novel and powerful bioassays. In light of the notable advancements in immunodiagnostics, this book highlights the combined efforts of clinicians, biotechnologists, material scientists, nanotechnologists and basic scientists in a coherent and highly structured way. The book takes readers on the journey of immunodiagnostic technologies, from their introduction to the present.
Quantum Sensing at the Interface of Nanotechnology Integrated Microfluidics provides broad multidisciplinary coverage of innovative quantum sensing technologies suitable to industries in the engineering, biomedical, healthcare and environmental sectors. Sections discuss emerging quantum sensing and with an introduction to microfluidic devices, smart sensors, the role of nanotechnology, smart sensing, and the role of quantum technology and artificial intelligence for nano-enabled microfluidics. Sensing technologies and nano-enabled microfluidics and their biomedical and industrial applications are explored. This will be a useful resource for those in research and industry interested in biotechnology, nanotechnology, sensing technology and their applications in multidisciplinary fields. Provides an introduction to the types of microfluidic devices, smart sensors, and the role of nanotechnology Covers smart sensing for multidisciplinary sectors Explores the challenges and prospects of nano-microfluidics systems
This book addresses challenges for the development of a point-of-care-test platform. The book describes printed chip-based assay (Lab-on-a-Chip, Lab-on-a-PCB) for rapid, inexpensive biomarkers detection in real samples. The main challenges of point-of-care testing require implementing complex analytical methods into low-cost technologies. This is particularly true for countries with less developed healthcare infrastructure. Washing-free, Lab-on-Chip, and Lab-on-PCB techniques are very simple and innovative for point-of-care device development. The redox cycling technology detects several interesting targets at the same time on a printed chip. The proposed areas are inherently cross-disciplinary, combining expertise in biosensing, electrochemistry, electronics and electrical engineering, health care, and manufacturing. This book focuses on recent advances and different research issues in the nanobiotechnology-enabled biosensor technology and also seeks out theoretical, methodological, well-established, and validated empirical work dealing with these different topics.
The book, Nanosensors for Futuristic Smart and Intelligent Healthcare Systems, presents a treatise on nanosensors technology including wearables, implantable devices and wireless tools. The recent pandemic (COVID-19) has changed the behaviour of people towards diagnosis of infectious diseases and monitoring remote patient health status in real-time. The main focus of this book is the basic concepts of nanomaterials and sensing paradigms for medical devices based on nanosensor technology. The book will be valuable to researchers, engineers and scientists interested in the field of healthcare for monitoring health status in real-time.
Nanosensors for Smart Manufacturing provides information on the fundamental design concepts and emerging applications of nanosensors in smart manufacturing processes. In smart production, if the products and machines are integrated, embedded, or equipped with sensors, the system can immediately collect the current operating parameters, predict the product quality, and then feed back the optimal parameters to machines in the production line. In this regard, smart sensors and their wireless networks are important components of smart manufacturing. Nanomaterials-based sensors (nanosensors) offer several advantages over their microscale counterparts, including lower power consumption, fast response time, high sensitivity, lower concentration of analytes, and smaller interaction distance between sensors and products. With the support of artificial intelligence (AI) tools such as fuzzy logic, genetic algorithms, neural networks, and ambient intelligence, sensor systems have become smarter. This is an important reference source for materials scientists and engineers who want to learn more about how nanoscale sensors can enhance smart manufacturing techniques and processes. Outlines the smart nanosensor classes used in manufacturing applications Shows how nanosensors are being used to make more efficient manufacturing systems Assesses the major obstacles to designing nanosensor-based manufacturing systems at an industrial scale
The critical goal of nanobiosensors is to detect any biochemical and/or biophysical signal related to a specific disease at the level of a single or few molecules. Nanobiosensors have been successful for in vitro as well as in vivo detection of several biomolecules. It is expected that this technology will revolutionize point-of-care and personalized diagnostics, and will be extremely applicable for early disease detection. This book starts with a brief introduction of the biosensors and then focuses mainly on the emerging nanobiosensor technologies which are geared towards onsite clinical applications and those which can be used as a personalized diagnostic device. Written by an international team of researchers who are actively developing these technologies, Nanobiosensors for Personalized and Onsite Biomedical Diagnosis covers the latest advances in the field of biosensors and biosensing applications. This important book includes an assessment of some current and emerging technologies for detecting protein biomarkers and other potential cancer biomarkers and is essential reading for researchers and graduate students in the field. Medics including radiologists and clinicians will also find it invaluable.