Download Free New Trends In Nonlinear Dynamics And Control And Their Applications Book in PDF and EPUB Free Download. You can read online New Trends In Nonlinear Dynamics And Control And Their Applications and write the review.

A selection of papers exploring a wide spectrum of new trends in nonlinear dynamics and control, such as bifurcation control, state estimation and reconstruction, analysis of behavior and stabilities, dynamics of nonlinear neural network models, and numerical algorithms. The papers focus on new ideas and the latest developments in both theoretical and applied research topics of nonlinear control. Because many of the authors are leading researchers in their own fields, the papers presented in this volume reflect the state of the art in the areas of nonlinear dynamics and control. Many of the papers in this volume were first presented at the highly succesful ''Symposium on New Trends in Nonlinear Dynamics and Control, and Their Applications,'' held October 18-19, 2002, in Monterey, California.
This third of three volumes from the inaugural NODYCON, held at the University of Rome, in February of 2019, presents papers devoted to New Trends in Nonlinear Dynamics. The collection features both well-established streams of research as well as novel areas and emerging fields of investigation. Topics in Volume III include NEMS/MEMS and nanomaterials: multi-sensors, actuators exploiting nonlinear working principles; adaptive, multifunctional, and meta material structures; nanocomposite structures (e.g., carbon nanotube/polymer composites, composites with functionalized nanoparticles); 0D,1D,2D,3D nanostructures; biomechanics applications, DNA modeling, walking dynamics, heart dynamics, neurodynamics, capsule robots, jellyfish-like robots, nanorobots; cryptography based on chaotic maps; ecosystem dynamics, social media dynamics (user behavior dynamics in multi-messages social hotspots, prediction models), financial engineering, complexity in engineering; and network dynamics (multi-agent systems, leader-follower dynamics, swarm dynamics, biological networks dynamics).
In recent years, enormous progress has been made on nonlinear dynamics particularly on chaos and complex phenomena. This unique volume presents the advances made in theory, analysis, numerical simulation and experimental realization, promising novel practical applications on various topics of current interest on chaos and related fields of nonlinear dynamics.Particularly, the focus is on the following topics: synchronization vs. chaotic phenomena, chaos and its control in engineering dynamical systems, fractal-based dynamics, uncertainty and unpredictability measures vs. chaos, Hamiltonian systems and systems with time delay, local/global stability, bifurcations and their control, applications of machine learning to chaos, nonlinear vibrations of lumped mass mechanical/mechatronic systems (rigid body and coupled oscillator dynamics) governed by ODEs and continuous structural members (beams, plates, shells) vibrations governed by PDEs, patterns formation, chaos in micro- and nano-mechanical systems, chaotic reduced-order models, energy absorption/harvesting from chaotic, chaos vs. resonance phenomena, chaos exhibited by discontinuous systems, chaos in lab experiments.The present volume forms an invaluable source on recent trends in chaotic and complex dynamics for any researcher and newcomers to the field of nonlinear dynamics.
Chaos control refers to purposefully manipulating chaotic dynamical behaviors of some complex nonlinear systems. There exists no similar control theory-oriented book available in the market that is devoted to the subject of chaos control, written by control engineers for control engineers. World-renowned leading experts in the field provide their state-of-the-art survey about the extensive research that has been done over the last few years in this subject. The new technology of chaos control has major impact on novel engineering applications such as telecommunications, power systems, liquid mixing, internet technology, high-performance circuits and devices, biological systems modeling like the brain and the heart, and decision making. The book is not only aimed at active researchers in the field of chaos control involving control and systems engineers, theoretical and experimental physicists, and applied mathematicians, but also at a general audience in related fields.
A selection of papers exploring a wide spectrum of new trends in nonlinear dynamics and control, such as bifurcation control, state estimation and reconstruction, analysis of behavior and stabilities, dynamics of nonlinear neural network models, and numerical algorithms. The papers focus on new ideas and the latest developments in both theoretical and applied research topics of nonlinear control. Because many of the authors are leading researchers in their own fields, the papers presented in this volume reflect the state of the art in the areas of nonlinear dynamics and control. Many of the papers in this volume were first presented at the highly succesful ''Symposium on New Trends in Nonlinear Dynamics and Control, and Their Applications,'' held October 18-19, 2002, in Monterey, California.
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. This volume concentrates on reviewing the most relevant contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. The book covers the theory as applied to robotics, electronic and communication engineering (for example chaos synchronization and cryptography) as well as to civil and mechanical engineering, where its use in damage monitoring and control is explored). Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a ‘recipe book’ full of tried and tested, successful engineering applications
This book, published in honor of Professor Laurent Praly on the occasion of his 65th birthday, explores the responses of some leading international authorities to new challenges in nonlinear and adaptive control. The mitigation of the effects of uncertainty and nonlinearity - ubiquitous features of real-world engineering and natural systems - on closed-loop stability and robustness being of crucial importance, the contributions report the latest research into overcoming these difficulties in: autonomous systems; reset control systems; multiple-input-multiple-output nonlinear systems; input delays; partial differential equations; population games; and data-driven control. Trends in Nonlinear and Adaptive Control presents research inspired by and related to Professor Praly's lifetime of contributions to control theory and is a valuable addition to the literature of advanced control.
The purpose of this book is to present a self-contained description of the fun damentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as weil as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teach ing at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl-Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985.
This volume is an outgrowth of the workshop "Applications of Advanced Control Theory to Robotics and Automation, "organized in honor of the 70th birthdays of Petar V. Kokotovic and Salvatore (Turi) Nicosia. Both Petar and Turi have carried out distinguished work in the control community and have long been recognized as mentors, as well as experts and pioneers in the field of automatic control, covering many topics in control theory and several different applications. The variety of their research is reflected in this book, which includes contributions ranging from mathematics to laboratory experiments. The scope of the work is very broad, and although each chapter is self-contained, the book has been organized into thematically related chapters, which in some cases, suggest to the reader a convenient reading sequence. The great variety of topics covered and the almost tutorial writing style used by many of the authors will make this book suitable for both experts in the control field and young researchers who seek a more intuitive understanding of these relevant topics in the field.
This book introduces the principle theories and applications of control and filtering problems to address emerging hot topics in feedback systems. With the development of IT technology at the core of the 4th industrial revolution, dynamic systems are becoming more sophisticated, networked, and advanced to achieve even better performance. However, this evolutionary advance in dynamic systems also leads to unavoidable constraints. In particular, such elements in control systems involve uncertainties, communication/transmission delays, external noise, sensor faults and failures, data packet dropouts, sampling and quantization errors, and switching phenomena, which have serious effects on the system’s stability and performance. This book discusses how to deal with such constraints to guarantee the system’s design objectives, focusing on real-world dynamical systems such as Markovian jump systems, networked control systems, neural networks, and complex networks, which have recently excited considerable attention. It also provides a number of practical examples to show the applicability of the presented methods and techniques. This book is of interest to graduate students, researchers and professors, as well as R&D engineers involved in control theory and applications looking to analyze dynamical systems with constraints and to synthesize various types of corresponding controllers and filters for optimal performance of feedback systems.