Download Free New Trends And Advanced Methods In Interdisciplinary Mathematical Sciences Book in PDF and EPUB Free Download. You can read online New Trends And Advanced Methods In Interdisciplinary Mathematical Sciences and write the review.

The latest of five multidisciplinary volumes, this book spans the STEAM-H (Science, Technology, Engineering, Agriculture, Mathematics, and Health) disciplines with the intent to generate meaningful interdisciplinary interaction and student interest. Emphasis is placed on important methods and applications within and beyond each field. Topics include geometric triple systems, image segmentation, pattern recognition in medicine, pricing barrier options, p-adic numbers distribution in geophysics data pattern, adelic physics, and evolutionary game theory. Contributions were by invitation only and peer-reviewed. Each chapter is reasonably self-contained and pedagogically presented for a multidisciplinary readership.
This book covers pattern recognition techniques applied to various areas of biomedicine, including disease diagnosis and prognosis, and several problems of classification, with a special focus on—but not limited to—pattern recognition modeling of biomedical signals and images. Multidisciplinary by definition, the book’s topic blends computing, mathematics and other technical sciences towards the development of computational tools and methodologies that can be applied to pattern recognition processes. In this work, the efficacy of such methods and techniques for processing medical information is analyzed and compared, and auxiliary criteria for determining the correct diagnosis and treatment strategies are recommended and applied. Researchers in applied mathematics, the computer sciences, engineering and related fields with a focus on medical applications will benefit from this book, as well as professionals with a special interest in state-of-the-art pattern recognition techniques as applied to biomedicine.
This book constitutes the refereed proceedings of the 7th International Workshop on Artificial Intelligence and Pattern Recognition, IWAIPR 2021, held in Havana, Cuba, in October 2021. The 42 full papers presented were carefully reviewed and selected from 73 submissions. The papers promote and disseminate ongoing research on mathematical methods and computing techniques for artificial intelligence and pattern recognition, in particular in bioinformatics, cognitive and humanoid vision, computer vision, image analysis and intelligent data analysis.
This book originates from the idea to adapt biomedical engineering and medical informatics to current clinical needs and proposes a paradigm shift in medical engineering, where the limitations of technology should no longer be the starting point of design, but rather the development of biomedical devices, software, and systems should stem from clinical needs and wishes. Gathering chapters written by authoritative researchers, working the interface between medicine and engineering, this book presents successful attempts of conceiving technology based on clinical practice. It reports on new strategies for medical diagnosis, rehabilitation, and eHealth, focusing on solutions to foster better quality of life through technology, with an emphasis on patients’ and clinical needs, and vulnerable populations. All in all, the book offers a reference guide and a source of inspiration for biomedical engineers, clinical scientists, physicians, and computer scientists. Yet, it also includes practical information for personnel using biomedical equipment, as well as timely insights that are expected to help health agencies and software firms in their decision-making processes.
This book presents a collection of papers from the 10th ISAAC Congress 2015, held in Macau, China. The papers, prepared by respected international experts, address recent results in Mathematics, with a special focus on Analysis. By structuring the content according to the various mathematical topics, the volume offers specialists and non-specialists alike an excellent source of information on the state-of-the-art in Mathematical Analysis and its interdisciplinary applications.
Mathematicians like to point out that mathematics is universal. In spite of this, most people continue to view it as either mundane (balancing a checkbook) or mysterious (cryptography). This fifth volume of the What's Happening series contradicts that view by showing that mathematics is indeed found everywhere-in science, art, history, and our everyday lives. Here is some of what you'll find in this volume: Mathematics and Science Mathematical biology: Mathematics was key tocracking the genetic code. Now, new mathematics is needed to understand the three-dimensional structure of the proteins produced from that code. Celestial mechanics and cosmology: New methods have revealed a multitude of solutions to the three-body problem. And other new work may answer one of cosmology'smost fundamental questions: What is the size and shape of the universe? Mathematics and Everyday Life Traffic jams: New models are helping researchers understand where traffic jams come from-and maybe what to do about them! Small worlds: Researchers have found a short distance from theory to applications in the study of small world networks. Elegance in Mathematics Beyond Fermat's Last Theorem: Number theorists are reaching higher ground after Wiles' astounding 1994 proof: new developments inthe elegant world of elliptic curves and modular functions. The Millennium Prize Problems: The Clay Mathematics Institute has offered a million dollars for solutions to seven important and difficult unsolved problems. These are just some of the topics of current interest that are covered in thislatest volume of What's Happening in the Mathematical Sciences. The book has broad appeal for a wide spectrum of mathematicians and scientists, from high school students through advanced-level graduates and researchers.
Every day we need to solve large problems for which supercomputers are needed. High performance computing (HPC) is a paradigm that allows to efficiently implement large-scale computational tasks on powerful supercomputers unthinkable without optimization. We try to minimize our effort and to maximize the achieved profit. Many challenging real world problems arising in engineering, economics, medicine and other areas can be formulated as large-scale computational tasks. The volume is a comprehensive collection of extended contributions from the High performance computing conference held in Borovets, Bulgaria, September 2019. This book presents recent advances in high performance computing. The topics of interest included into this volume are: HP software tools, Parallel Algorithms and Scalability, HPC in Big Data analytics, Modelling, Simulation & Optimization in a Data Rich Environment, Advanced numerical methods for HPC, Hybrid parallel or distributed algorithms. The volume is focused on important large-scale applications like Environmental and Climate Modeling, Computational Chemistry and Heuristic Algorithms.
The year 2023 marks the 100th birth anniversary of E.F. Codd (19 August 1923 - 18 April 2003), a computer scientist, who while working for IBM invented the relational model for database management, the theoretical basis for relational databases and relational database management systems. He made other valuable contributions to computer science but the relational model, a very influential general theory of data management, remains his most mentioned, analyzed, and celebrated achievement. School of Computer Application, under the aegis of Lovely Professional University, pays homage to this great scientist of all times by hosting “CODD100 – International Conference on Networks, Intelligence and Computing (ICONIC-2023)”.
Fuzzy logic, which is based on the concept of fuzzy set, has enabled scientists to create models under conditions of imprecision, vagueness, or both at once. As a result, it has now found many important applications in almost all sectors of human activity, becoming a complementary feature and supporter of probability theory, which is suitable for modelling situations of uncertainty derived from randomness. Fuzzy mathematics has also significantly developed at the theoretical level, providing important insights into branches of traditional mathematics like algebra, analysis, geometry, topology, and more. With such widespread applications, fuzzy sets and logic are an important area of focus in mathematics. The Handbook of Research on Advances and Applications of Fuzzy Sets and Logic studies recent theoretical advances of fuzzy sets and numbers, fuzzy systems, fuzzy logic and their generalizations, extensions, and more. This book also explores the applications of fuzzy sets and logic applied to science, technology, and everyday life to further provide research on the subject. This book is ideal for mathematicians, physicists, computer specialists, engineers, practitioners, researchers, academicians, and students who are looking to learn more about fuzzy sets, fuzzy logic, and their applications.