Download Free New Theory Of Discriminant Analysis After R Fisher Book in PDF and EPUB Free Download. You can read online New Theory Of Discriminant Analysis After R Fisher and write the review.

This is the first book to compare eight LDFs by different types of datasets, such as Fisher’s iris data, medical data with collinearities, Swiss banknote data that is a linearly separable data (LSD), student pass/fail determination using student attributes, 18 pass/fail determinations using exam scores, Japanese automobile data, and six microarray datasets (the datasets) that are LSD. We developed the 100-fold cross-validation for the small sample method (Method 1) instead of the LOO method. We proposed a simple model selection procedure to choose the best model having minimum M2 and Revised IP-OLDF based on MNM criterion was found to be better than other M2s in the above datasets. We compared two statistical LDFs and six MP-based LDFs. Those were Fisher’s LDF, logistic regression, three SVMs, Revised IP-OLDF, and another two OLDFs. Only a hard-margin SVM (H-SVM) and Revised IP-OLDF could discriminate LSD theoretically (Problem 2). We solved the defect of the generalized inverse matrices (Problem 3). For more than 10 years, many researchers have struggled to analyze the microarray dataset that is LSD (Problem 5). If we call the linearly separable model "Matroska," the dataset consists of numerous smaller Matroskas in it. We develop the Matroska feature selection method (Method 2). It finds the surprising structure of the dataset that is the disjoint union of several small Matroskas. Our theory and methods reveal new facts of gene analysis.
This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks. Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratio of SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel. Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis.
In today's interconnected world, fraud and corruption threaten the integrity of global financial systems, making illicit and illegitimate finance a pressing concern across industries. Editor Abdul Rafay, an esteemed academic scholar in financial crimes, corporate finance, and financial technology, offers the definitive solution to the Theory and Practice of Illegitimate Finance. This premier reference work comprehensively explores all facets of illicit finance, providing invaluable insights and real-world case studies on financial crimes, money laundering, tax evasion, and fraudulent practices. Through meticulous research and analysis, the book equips business owners, policymakers, researchers, and industry professionals with strategies to combat and prevent illicit finance from infiltrating financial institutions and businesses. As an indispensable resource for academicians and students, Theory and Practice of Illegitimate Finance empowers readers to tackle the complexities of illicit finance. Abdul Rafay's unparalleled expertise, evident from his successful editing of previous books and numerous research papers, enhances the book's credibility. By embracing the transformative journey offered by the book's insights, readers from all walks of life can contribute to a more transparent and accountable financial world, ensuring the integrity of global finance systems and paving the way for a brighter and more secure future.
This edited book presents the scientific outcomes of the 4th IEEE/ACIS International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD 2019) which was held on May 29–31, 2019 in Honolulu, Hawaii. The aim of the conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Presenting 15 of the conference’s most promising papers, the book discusses all aspects (theory, applications and tools) of computer and information science, the practical challenges encountered along the way, and the solutions adopted to solve them.
Discriminant Analysis and Applications comprises the proceedings of the NATO Advanced Study Institute on Discriminant Analysis and Applications held in Kifissia, Athens, Greece in June 1972. The book presents the theory and applications of Discriminant analysis, one of the most important areas of multivariate statistical analysis. This volume contains chapters that cover the historical development of discriminant analysis methods; logistic and quasi-linear discrimination; and distance functions. Medical and biological applications, and computer graphical analysis and graphical techniques for multidimensional data are likewise discussed. Statisticians, mathematicians, and biomathematicians will find the book very interesting.
This book constitutes the refereed proceedings of the 28th Conference on Current Trends in Theory and Practice of Informatics, SOFSEM 2001, held in Piestany, Slovak Republic, in November/December 2001. Teh volume presents 12 invited lectures and one keynote paper by leading researchers together with 18 revised full research papers selected from 46 submissions. The papers span the whole range of informatics with emphasis on trends in informatics, enabling technologies for global computing, and practical systems engineering.
This book constitutes the refereed proceedings of the 27th Australasian Database Conference, ADC 2016, held in Sydney, NSW, Australia, in September 2016. The 33 full papers presented together with 11 demo papers were carefully reviewed and selected from 55 submissions. The mission of ADC is to share novel research solutions to problems of today’s information society that fulfill the needs of heterogeneous applications and environments and to identify new issues and directions for future research. The topics of the presented papers are related to all practical and theoretical aspects of advanced database theory and applications, as well as case studies and implementation experiences.
This book constitutes the refereed proceedings of the Third International Conference on Advanced Data Mining and Applications, ADMA 2007, held in Harbin, China in August 2007. The papers focus on advancements in data mining and peculiarities and challenges of real world applications using data mining.
The book presents the proceedings of four conferences: The 24th International Conference on Image Processing, Computer Vision, & Pattern Recognition (IPCV'20), The 6th International Conference on Health Informatics and Medical Systems (HIMS'20), The 21st International Conference on Bioinformatics & Computational Biology (BIOCOMP'20), and The 6th International Conference on Biomedical Engineering and Sciences (BIOENG'20). The conferences took place in Las Vegas, NV, USA, July 27-30, 2020, and are part of the larger 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20), which features 20 major tracks. Authors include academics, researchers, professionals, and students. Presents the proceedings of four conferences as part of the 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20); Includes the tracks on Image Processing, Computer Vision, & Pattern Recognition, Health Informatics & Medical Systems, Bioinformatics, Computational Biology & Biomedical Engineering; Features papers from IPCV'20, HIMS'20, BIOCOMP'20, and BIOENG'20.