Download Free New Theoretical Results On Stability Regions And Bifurcations Of Nonlinear Dynamical Systems And Their Applications To Electric Power Systems Analysis Book in PDF and EPUB Free Download. You can read online New Theoretical Results On Stability Regions And Bifurcations Of Nonlinear Dynamical Systems And Their Applications To Electric Power Systems Analysis and write the review.

An authoritative treatment by leading researchers covering theory and optimal estimation, along with practical applications.
Learn how to implement BCU methods for fast direct stability assessments of electric power systems Electric power providers around the world rely on stability analysis programs to help ensure uninterrupted service to their customers. These programs are typically based on step-by-step numerical integrations of power system stability models to simulate system dynamic behaviors. Unfortunately, this offline practice is inadequate to deal with current operating environments. For years, direct methods have held the promise of providing real-time stability assessments; however, these methods have presented several challenges and limitations. This book addresses these challenges and limitations with the BCU methods developed by author Hsiao-Dong Chiang. To date, BCU methods have been adopted by twelve major utility companies in Asia and North America. In addition, BCU methods are the only direct methods adopted by the Electric Power Research Institute in its latest version of DIRECT 4.0. Everything you need to take full advantage of BCU methods is provided, including: Theoretical foundations of direct methods Theoretical foundations of energy functions BCU methods and their theoretical foundations Group-based BCU method and its applications Numerical studies on industrial models and data Armed with a solid foundation in the underlying theory of direct methods, energy functions, and BCU methods, you'll discover how to efficiently solve complex practical problems in stability analysis. Most chapters begin with an introduction and end with concluding remarks, making it easy for you to implement these tested and proven methods that will help you avoid costly and dangerous power outages.
This authoritative treatment covers theory, optimal estimation and a range of practical applications. The first book on the subject, and written by leading researchers, this clear and rigorous work presents a comprehensive theory for both the stability boundary and the stability regions of a range of nonlinear dynamical systems including continuous, discrete, complex, two-time-scale and non-hyperbolic systems, illustrated with numerical examples. The authors also propose new concepts of quasi-stability region and of relevant stability regions and their complete characterisations. Optimal schemes for estimating stability regions of general nonlinear dynamical systems are also covered, and finally the authors describe and explain how the theory is applied in applications including direct methods for power system transient stability analysis, nonlinear optimisation for finding a set of high-quality optimal solutions, stabilisation of nonlinear systems, ecosystem dynamics, and immunisation problems.
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.