Download Free New Techniques For Studying Biomembranes Book in PDF and EPUB Free Download. You can read online New Techniques For Studying Biomembranes and write the review.

New Techniques for Studying Biomembranes describes some of the latest methods used to investigate the dynamic distribution of specific lipids in membranes and their effects on other membrane components. The contributors present important discoveries with respect to lipid analysis and lipid interactions with membrane proteins. Various methods, which have been used to study lipid bilayer structure and lipid organization in membranes, include both in vitro and in vivo membrane systems, and study membrane proteins in various membrane systems. Key Features: Reviews both in vivo and in vitro analytical technologies and methods for studying membrane structure and function Explores how lipid bilayers and membrane proteins interact Includes contributions from an international team of researchers actively studying membrane structure and function Identifies various diseases whose causes are related to membrane proteins Related Titles: Christopher R. Jacobs, Hayden Huang, and Ronald Y. Kwon. Introduction to Cell Mechanics and Mechanobiology (ISBN 978-0-8153-4425-4) Wendell Lim and Bruce Mayer. Cell Signaling: Principles and Mechanisms (ISBN 978-0-8153-4244-1) Stephen Rothman. Proteins Crossing Membranes: A Scientist’s Memoir (978-0-3670-7449-4)
This book describes methods used to investigate the function and distribution of lipids in membranes. Contributors present discoveries that have to do with lipid analysis and lipid interactions with other components of membranes, such as proteins, receptors, transporters and ion channels.
Biological membranes play a significant role in a range of biological processes such as ion-transport and signal transduction. Over the years much effort has been devoted towards developing an understanding of biomembrane structure. The study of this subject is now reaching an important stage. This is because at last the full three-dimensional structure of certain membrane proteins is beginning to be resolved. In the past three-dimensional structures of membrane proteins were difficult to obtain as only two dimensional crystals were available. In recent years satisfactory crystals have been obtained and X-ray diffraction techniques have been applied. This has led to the three dimensional structures of the photosynthetic reaction centres, porins and more recently the structure of cytochrome oxidase. Of course not all membrane proteins are readily crystallisable and some are not even available in sufficient quantities to obtain the necessary crystals or to carry out biophysical experiments. In some cases e.g. the voltage-gated potassium ion channel membrane proteins their structure has been proposed mainly on the basis of molecular biology methods. This has prompted the search for alternative approaches for characterising biomembrane structure. Molecular biological studies are providing a wealth of information on a number of different membrane proteins. Combining the information derived from such studies with molecular modelling is becoming extremely useful for relating structure to function. Development of other approaches include synthesis and structure- function analysis of peptides corresponding to functionally important domains of membrane proteins. This book presents a series of Chapters discussing how a combination of molecular biological, biophysical and theoretical (molecular modelling) techniques are helping us to obtain a much clearer picture of biomembrane structure. After an introductory Chapter on the Principles of membrane Protein Structure, the book is divided into two sections; one dealing with crystallographic approaches and the other non-crystallographic approaches such as NMR, AFM, SPR and FTIR spectroscopy. Chapters dealing with the recently solved crystal structure of cytochrome oxidase and bacteriorhodopsin are presented. The book contains contributions from leading membrane scientists describing their latest studies. It provides an up to date coverage of the developments in the field of biomembranes with particular emphasis on membrane proteins.
The study of membranes has become of high importance in the fields of biology, pharmaceutical chemistry and medicine, since much of what happens in a cell or in a virus involves biological membranes. The current book is an excellent introduction to the area, which explains how modern analytical methods can be applied to study biological membranes and membrane proteins and the bioprocesses they are involved to.
A reflection of the intense study of the effects of electromagnetic fields on living tissues that has taken place during the last decades, Advanced Electroporation Techniques in Biology and Medicine summarizes most recent experimental findings and theories related to permeabilization of biomembranes by pulsed electric fields. Edited by experts and
This book is about the importance of water in determining the structure, stability and responsive behavior of biological membranes. Water confers to lipid membranes unique features in terms of surface and mechanical properties. The analysis of the hydration forces, plasticiser effects, controlled hydration, formation of microdomains of confined water suggests that water is an active constituent in a water-lipid system. The chapters describe water organization at the lipid membrane–water interphase, the water penetration, the long range water structure in the presence of lipid membranes by means of X-ray and neutron scattering, general polarization, fluorescent probes, ATR-FTIR and near infrared spectroscopies, piezo electric methods, computer simulation and surface thermodynamics. Permeation, percolation, osmotic stress, polarization, protrusion, sorption, hydrophobicity, density fluctuations are treated in detail in self-assembled bilayers. Studies in lipid monolayers show the correlation of surface pressure with water activity and its role in peptide and enzyme interactions. The book concludes with a discussion on anhydrobiosis and the effect of water replacement in microdomains and its consequence for cell function. New definitions of lipid/water interphases consider water not only as a structural-making solvent but as a mediator in signalling metabolic activity, modulating protein insertion and enzymatic activity, triggering oscillatory reactions and functioning of membrane bound receptors. Since these effects occur at the molecular level, membrane hydration appears fundamental to understand the behavior of nano systems and confined environments mimicking biological systems. These insights in structural, thermodynamical and mechanical water properties give a base for new paradigms in membrane structure and function for those interested in biophysics, physical chemistry, biology, bio and nano medicine, biochemistry, biotechnology and nano sciences searching for biotechnological inputs in human health, food industry, plant growing and energy conversion.
In mammalian cells many physiological processes rely on the dynamics of the organization of lipids and proteins in biological membranes. The topics in this volume deal with physicochemical methods in the study of biomembranes. Some of them have a long and respectable history in the study of soluble proteins and have only recently been applied to the study of membranes. Some have tradi tionally been applied to studies of model systems of lipids of well-defined com position, as well as to intact membranes. Other methods, by their very nature, apply to organized bilayers comprised of both protein and lipid. Van Meer and van Genderen provide us with an introduction to the field (Chapter I). From their personal perspective regarding the distribution, trans port, and sorting of membrane lipids, they formulate a number of biologically relevant questions and show that the physicochemical methods described in this book may contribute in great measure to solving these issues. The methods of analytical ultracentrifugation have served faithfully for 60 years in the study of water-soluble proteins. The use of detergent extraction of membrane proteins, and the manipulation of density with H20/D20 mixtures, has extended this technique to the study of proteins, and in particular their interactions, from biological membranes. As described by Morris and Ralston in Chapter 2, this technique can be used to determine a number of important properties of proteins.
The critically acclaimed laboratory standard, Methods in Enzymology, is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. The series contains much material still relevant today - truly an essential publication for researchers in all fields of life sciences.
In this new edition of The Membranes of Cells, all of the chapters have been updated, some have been completely rewritten, and a new chapter on receptors has been added. The book has been designed to provide both the student and researcher with a synthesis of information from a number of scientific disciplines to create a comprehensive view of the structure and function of the membranes of cells. The topics are treated in sufficient depth to provide an entry point to the more detailed literature needed by the researcher. Key Features * Introduces biologists to membrane structure and physical chemistry * Introduces biophysicists to biological membrane function * Provides a comprehensive view of cell membranes to students, either as a necessary background for other specialized disciplines or as an entry into the field of biological membrane research * Clarifies ambiguities in the field