Download Free New Research On Neutrosophic Algebraic Structures Book in PDF and EPUB Free Download. You can read online New Research On Neutrosophic Algebraic Structures and write the review.

This volume presents state-of-the-art papers on new topics related to neutrosophic theories, such as neutrosophic algebraic structures, neutrosophic triplet algebraic structures, neutrosophic extended triplet algebraic structures, neutrosophic algebraic hyperstructures, neutrosophic triplet algebraic hyperstructures, neutrosophic n-ary algebraic structures, neutrosophic n-ary algebraic hyperstructures, refined neutrosophic algebraic structures, refined neutrosophic algebraic hyperstructures, quadruple neutrosophic algebraic structures, refined quadruple neutrosophic algebraic structures, neutrosophic image processing, neutrosophic image classification, neutrosophic computer vision, neutrosophic machine learning, neutrosophic artificial intelligence, neutrosophic data analytics, neutrosophic deep learning, and neutrosophic symmetry, as well as their applications in the real world.
For the involvement of uncertainty of varying degrees, when the total of the membership degree exceeds one or less than one, then the newer mathematical paradigm shift, Fuzzy Theory proves appropriate.For the past two or three decades, Fuzzy Theory has become the potent tool to study and analyze uncertainty involved in all problems. But, many real world problems also abound with the concept of indeterminacy.In this book, the new, powerful tool of neutrosophy that deals with indeterminacy is utilized. Innovative neutrosophic models are described.The theory of neutrosophic graphs is introduced and applied to fuzzy and neutrosophic models.Neutrosophic Logic and Neutrosophic Set (generalizations of Intuitionistic Fuzzy Logic and Intuitionistic Fuzzy Set respectively) became strong tools for applications.
Studies to neutrosophic graphs happens to be not only innovative and interesting, but gives a new dimension to graph theory. The classic coloring of edge problem happens to give various results. Neutrosophic tree will certainly find lots of applications in data mining when certain levels of indeterminacy is involved in the problem. Several open problems are suggested.
Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been an important tool in the application of various areas such as data mining, decision making, e-learning, engineering, medicine, social science, and some more.
In all classical algebraic structures, the Laws of Compositions on a given set are well-defined. But this is a restrictive case, because there are many more situations in science and in any domain of knowledge when a law of composition defined on a set may be only partially-defined (or partially true) and partially-undefined (or partially false), that we call NeutroDefined, or totally undefined (totally false) that we call AntiDefined.
This paper aims to make a valuable contribution to the field of neutrosophic determinants and their properties. By utilizing neutrosophic real numbers in the form of a+bI, we provide an alternative approach to recent research on determinants conducted between 2020 and 2023. Our goal is to expand the scope of academic content being developed in the theory of neutrosophic linear algebra. Additionally, we seek to complement our work on some algebraic structures of neutrosophic matrices.
In the world of mathematics, the study of fuzzy relations and its theories are well-documented and a staple in the area of calculative methods. What many researchers and scientists overlook is how fuzzy theory can be applied to industries outside of arithmetic. The framework of fuzzy logic is much broader than professionals realize. There is a lack of research on the full potential this theoretical model can reach. The Handbook of Research on Emerging Applications of Fuzzy Algebraic Structures provides emerging research exploring the theoretical and practical aspects of fuzzy set theory and its real-life applications within the fields of engineering and science. Featuring coverage on a broad range of topics such as complex systems, topological spaces, and linear transformations, this book is ideally designed for academicians, professionals, and students seeking current research on innovations in fuzzy logic in algebra and other matrices.
This book for the first time introduces neutrosophic groups, neutrosophic semigroups, neutrosophic loops and neutrosophic groupoids and their neutrosophic N-structures.The special feature of this book is that it tries to analyze when the general neutrosophic algebraic structures like loops, semigroups and groupoids satisfy some of the classical theorems for finite groups viz. Lagrange, Sylow, and Cauchy.This is mainly carried out to know more about these neutrosophic algebraic structures and their neutrosophic N-algebraic structures.
In general, a system S (that may be a company, association, institution, society, country, etc.) is formed by sub-systems Si { or P(S), the powerset of S }, and each sub-system Si is formed by sub-sub-systems Sij { or P(P(S)) = P2(S) } and so on. That’s why the n-th PowerSet of a Set S { defined recursively and denoted by Pn(S) = P(Pn-1(S) } was introduced, to better describes the organization of people, beings, objects etc. in our real world. The n-th PowerSet was used in defining the SuperHyperOperation, SuperHyperAxiom, and their corresponding Neutrosophic SuperHyperOperation, Neutrosophic SuperHyperAxiom in order to build the SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra. In general, in any field of knowledge, one in fact encounters SuperHyperStructures. Also, six new types of topologies have been introduced in the last years (2019-2022), such as: Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, NeutroTopology, AntiTopology, SuperHyperTopology, and Neutrosophic SuperHyperTopology.
This paper aims to explore the algebra structure of refined neutrosophic numbers. Firstly, the algebra structure of neutrosophic quadruple numbers on a general field is studied. Secondly, The addition operator and multiplication operator on refined neutrosophic numbers are proposed and the algebra structure is discussed. We reveal that the set of neutrosophic refined numbers with an additive operation is an abelian group and the set of neutrosophic refined numbers with a multiplication operation is a neutrosophic extended triplet group. Moreover, algorithms for solving the neutral element and opposite elements of each refined neutrosophic number are given.