Download Free New Research On Genomic Instability Book in PDF and EPUB Free Download. You can read online New Research On Genomic Instability and write the review.

Genome Stability: From Virus to Human Application, Second Edition, a volume in the Translational Epigenetics series, explores how various species maintain genome stability and genome diversification in response to environmental factors. Here, across thirty-eight chapters, leading researchers provide a deep analysis of genome stability in DNA/RNA viruses, prokaryotes, single cell eukaryotes, lower multicellular eukaryotes, and mammals, examining how epigenetic factors contribute to genome stability and how these species pass memories of encounters to progeny. Topics also include major DNA repair mechanisms, the role of chromatin in genome stability, human diseases associated with genome instability, and genome stability in response to aging. This second edition has been fully revised to address evolving research trends, including CRISPRs/Cas9 genome editing; conventional versus transgenic genome instability; breeding and genetic diseases associated with abnormal DNA repair; RNA and extrachromosomal DNA; cloning, stem cells, and embryo development; programmed genome instability; and conserved and divergent features of repair. This volume is an essential resource for geneticists, epigeneticists, and molecular biologists who are looking to gain a deeper understanding of this rapidly expanding field, and can also be of great use to advanced students who are looking to gain additional expertise in genome stability. - A deep analysis of genome stability research from various kingdoms, including epigenetics and transgenerational effects - Provides comprehensive coverage of mechanisms utilized by different organisms to maintain genomic stability - Contains applications of genome instability research and outcomes for human disease - Features all-new chapters on evolving areas of genome stability research, including CRISPRs/Cas9 genome editing, RNA and extrachromosomal DNA, programmed genome instability, and conserved and divergent features of repair
Many cancer biologists now believe that genomic instability not only initiates carcinogenesis, but also allows the tumour cell to become metastatic and evade drug toxicity. The loss of stability of the genome is becoming accepted as one of the most important aspects of carcinogenesis. One of the hallmarks of the cancer cell is the inherent instability of its genome. This book presents important research in this exciting field.
Reprogramming the Genome: CRISPR-Cas-based Human Disease Therapy, presents the collation of chapters written by eminent scientists worldwide. CRISPR-Cas9 is a key technology for targeted genome editing and regulation in a number of organisms including mammalian cells. It is a rapid, simple, and cost-effective solution. CRISPR-Cas system has recently gained much scientific and public attention. This volume covers CRISPR-Cas9 based mammalian genome editing, creating disease models, cancer therapy, neurological, heredity, blood disorders, defective gene correction, stem cells therapy, epigenetic modifications, patents, ethics, biosafety and regulatory issues challenges and opportunities. This book is a key source of information on mammalian genome editing available in a single volume. This book will be useful for beginners in mammalian genome editing and also students, researchers, scientists, policymakers, clinicians and stakeholders interested in genome editing in several areas. Offers basic understanding and a clear picture of mammalian genome editing through CRISPR-Cas systems Discusses how to create mammalian disease models, stem cell modification, epigenetic modifications, correction of defective gene in blood disorders, heredity, neurological disorders and many more Discusses the application of CRISPR-Cas9 systems in basic sciences, biomedicine, molecular biology, translational sciences, neurobiology, neurology, cancer, stem cells, and many more
Aging has long since been ascribed to the gradual accumulation of DNA mutations in the genome of somatic cells. However, it is only recently that the necessary sophisticated technology has been developed to begin testing this theory and its consequences. Vijg critically reviews the concept of genomic instability as a possible universal cause of aging in the context of a new, holistic understanding of genome functioning in complex organisms resulting from recent advances in functional genomics and systems biology. It provides an up-to-date synthesis of current research, as well as a look ahead to the design of strategies to retard or reverse the deleterious effects of aging. This is particularly important in a time when we are urgently trying to unravel the genetic component of aging-related diseases. Moreover, there is a growing public recognition of the imperative of understanding more about the underlying biology of aging, driven by continuing demographic change.
Genome Chaos: Rethinking Genetics, Evolution, and Molecular Medicine transports readers from Mendelian Genetics to 4D-genomics, building a case for genes and genomes as distinct biological entities, and positing that the genome, rather than individual genes, defines system inheritance and represents a clear unit of selection for macro-evolution. In authoring this thought-provoking text, Dr. Heng invigorates fresh discussions in genome theory and helps readers reevaluate their current understanding of human genetics, evolution, and new pathways for advancing molecular and precision medicine. - Bridges basic research and clinical application and provides a foundation for re-examining the results of large-scale omics studies and advancing molecular medicine - Gathers the most pressing questions in genomic and cytogenomic research - Offers alternative explanations to timely puzzles in the field - Contains eight evidence-based chapters that discuss 4d-genomics, genes and genomes as distinct biological entities, genome chaos and macro-cellular evolution, evolutionary cytogenetics and cancer, chromosomal coding and fuzzy inheritance, and more
An overview of the current systems biology-based knowledge and the experimental approaches for deciphering the biological basis of cancer.
Underwood's Pathology (formerly General and Systematic Pathology) is an internationally popular and highly acclaimed textbook, written and designed principally for students of medicine and the related health sciences. Pathology is presented in the context of modern cellular and molecular biology and contemporary clinical practice. After a clear introduction to basic principles, it provides comprehensive coverage of disease mechanisms and the pathology of specific disorders ordered by body system. An unrivalled collection of clinical photographs, histopathology images and graphics complement the clear, concise text. For this seventh edition, the entire book has been revised and updated. Well liked features to assist problem-based learning – including body diagrams annotated with signs, symptoms and diseases and a separate index of common clinical problems – have been retained and refreshed. The advent of whole genome sequencing and increased knowledge of the genetics of disease has been recognised by updated sections in many chapters. Download the enhanced eBook version (from studentconsult.com) for anytime access to the complete contents plus bonus learning materials, including: - clinical case studies – to help apply essential principles to modern practice - the fully revised, interactive self-assessment section with over 200 questions and answers – to check your understanding and aid exam preparation - especially produced video and podcast tutorials – to further explain and bring to life key topics - bonus pathology crosswords – to recall key words and topics in a fun and interactive way This all combines to make Underwood's an unsurpassed learning package in this fascinating and most central medical specialty. From reviews of previous editions: "...it truly is an outstanding textbook...highly recommended" Histopathology "...no doubt it will remain a bestseller – excellent value for undergraduates" Journal of Clinical Pathology "A book of this kind deserves a wide readership" Modern Pathology ".. the definitive textbook of pathology...expands on previous success and cements its position as the market leader for undergraduate pathology" The Bulletin A prize winner: Previous editions have won First Prize in the Medical Writers Group of the Society of Authors Awards, the British Book Design and Production Awards and the British Medical Association Student Textbook Award.
This textbook takes you on a journey to the basic concepts of cancer biology. It combines developmental, evolutionary and cell biology perspectives, to then wrap-up with an integrated clinical approach. The book starts with an introductory chapter, looking at cancer in a nut shell. The subsequent chapters are detailed and the idea of cancer as a mass of somatic cells undergoing a micro-evolutionary Darwinian process is explored. Further, the main Hanahan and Weinberg “Hallmarks of Cancer” are revisited. In most chapters, the fundamental experiments that led to key concepts, connecting basic biology and biomedicine are highlighted. In the book’s closing section all of these concepts are integrated in clinical studies, where molecular diagnosis as well as the various classical and modern therapeutic strategies are addressed. The book is written in an easy-to-read language, like a one-on-one conversation between the writer and the reader, without compromising the scientific accuracy. Therefore, this book is suited not only for advanced undergraduates and master students but also for patients or curious lay people looking for a further understanding of this shattering disease
Written by an international team of experts, Somatic Genome Variation presents a timely summary of the latest understanding of somatic genome development and variation in plants, animals, and microorganisms. Wide-ranging in coverage, the authors provide an updated view of somatic genomes and genetic theories while also offering interpretations of somatic genome variation. The text provides geneticists, bioinformaticians, biologist, plant scientists, crop scientists, and microbiologists with a valuable overview of this fascinating field of research.
Since different types of stem cells for therapeutic applications have recently been proposed, this timely volume explores various sources of stem cells for tissue and organ regeneration and discusses their advantages and limitations. Also discussed are pros and cons for using embryonic stem cells, induced pluripotent stem cells, and adult stem cells isolated from postnatal tissues. Different types of adult stem cells for therapeutic applications are also reviewed, including hematopoietic stem cells, epidermal stem cells, endothelial progenitors, neural stem cells, mesenchymal stem cells, and very small embryonic-like stem cells. This book also addresses paracrine effects of stem cells in regenerative medicine that are mediated by extracellular microvesicles and soluble secretome. Finally, potential applications of stem cells in cardiology, gastroenterology, neurology, immunotherapy, and aging are presented. This is an ideal book for students and researchers working in the stem cell research field.