Download Free New Polymeric Products Book in PDF and EPUB Free Download. You can read online New Polymeric Products and write the review.

New Polymeric Products: Fundamentals, Forming Methods and Applications introduces applications of polymer materials in different fields, including new products and processing methods. This book is rich in content and creativity and introduces the development, history, characteristics and existing processing methods of polymer materials in a comprehensive and systematic manner. Sections include the latest achievements from future travel, energy problems, special environment, lens materials and biomedicine, which are the most concerning areas of human society today. The book also introduces forming principles, methods, achievements and development prospects from shallow to profound. It will benefit researchers and new academic participants and broaden their vision. Sections cover the development history and prospect of polymer materials, introduce polymer materials, including new materials, characteristics, synthesis, naming and functionality, and delve into new processing and forming methods which are introduced in three parts: plastic, rubber and fiber according to different product types. - Composed of relevant research results from the author's team, including general basic knowledge and the latest research in relevant fields - Introduces basic knowledge such as polymer development history, material characteristics and forming principles - Arranges trivial contents such as polymer development history in tables to make it clearer and easier to understand - Gives readers a clearer understanding of products, processing equipment and processes
Polymers are used in everything from nylon stockings to commercial aircraft to artificial heart valves, and they have a key role in addressing international competitiveness and other national issues. Polymer Science and Engineering explores the universe of polymers, describing their properties and wide-ranging potential, and presents the state of the science, with a hard look at downward trends in research support. Leading experts offer findings, recommendations, and research directions. Lively vignettes provide snapshots of polymers in everyday applications. The volume includes an overview of the use of polymers in such fields as medicine and biotechnology, information and communication, housing and construction, energy and transportation, national defense, and environmental protection. The committee looks at the various classes of polymersâ€"plastics, fibers, composites, and other materials, as well as polymers used as membranes and coatingsâ€"and how their composition and specific methods of processing result in unparalleled usefulness. The reader can also learn the science behind the technology, including efforts to model polymer synthesis after nature's methods, and breakthroughs in characterizing polymer properties needed for twenty-first-century applications. This informative volume will be important to chemists, engineers, materials scientists, researchers, industrialists, and policymakers interested in the role of polymers, as well as to science and engineering educators and students.
Product Design and Testing of Polymeric Materials integrates polymer science principles with detailed experimental programs—helping engineers create optimal products. Thoroughly investigating both physical and processing properties of polymeric substances, this valuable guide presents the philosophy of product development management ... includes test methods for base property and end-use performance ... pairs viscometric and small-scale testing with molecular properties for processing advantages ... examines quality control from the laboratory to the marketplace ... applies the mechanics of experimental design to product optimization problems ... covers the mathematics needed for proper regression of experimental data ... and much more. Product Design and Testing of Polymeric Materials is a complete reference— defining numerous plastics and engineering terms and supplying important data on elastomers and plastics—and is an essential resource for polymer, plastics, and chemical engineers and scientists, materials scientists, and graduate-level students in these disciplines.
Polymers are huge macromolecules composed of repeating structural units. While polymer in popular usage suggests plastic, the term actually refers to a large class of natural and synthetic materials. Due to the extraordinary range of properties accessible, polymers have come to play an essential and ubiquitous role in everyday life - from plastics and elastomers on the one hand to natural biopolymers such as DNA and proteins on the other hand. The study of polymer science begins with understanding the methods in which these materials are synthesized. Polymer synthesis is a complex procedure and can take place in a variety of ways. This book brings together the "Who is who" of polymer science to give the readers an overview of the large field of polymer synthesis. It is a one-stop reference and a must-have for all Chemists, Polymer Chemists, Chemists in Industry, and Materials Scientists.
Presenting practical information on new and conventional polymers and products as alternative materials and end-use applications, this work details technological advancements in high-structure plastics and elastomers, functionalized materials, and their product applications. The book also provides a comparison of manufacturing and processing techniques from around the world. It emphasizes product characterization, performance attributes and structural properties.
In the only book to focus on new developments and innovations in this hot field international experts from industry and academia present everything scientists need to know. The first section provides general concepts of the synthesis and properties of epoxy polymers and serves as a basis for the subsequent chapters. The second section includes new types of epoxy polymers recently commercialized or not yet present on the market, while the third section includes chapters related to the capacity of generating controlled nanostructures in epoxy-based materials. A fourth section is devoted to innovations in epoxy-based materials such as adhesives, coatings, pre-pregs, structural foams, injection-molded products and self-healing epoxies. Concluding remarks and perspectives are discussed in a short final section. The result is a one-stop reference source, collecting scientific and technological breakthroughs otherwise spread over hundreds of publications, patents and reports.
Polymeric foams are sturdy yet lightweight materials with applications across a variety of industries, from packaging to aerospace. As demand for these materials increase, so does innovation in the development of new processes and products. This book captures the most dynamic advances in processes, technologies, and products related to the polymeric foam market. It describes the latest business trends including new microcellular commercialization, sustainable foam products, and nanofoams. It also discusses novel processes, new and environmentally friendly blowing agents, and the development and usage of various types of foams, including bead and polycarbonate, polypropylene, polyetherimide microcellular, and nanocellular. The book also covers flame-retardant foams, rigid foam composites, and foam sandwich composites and details applications in structural engineering, electronics, and insulation. Authored by leading experts in the field, this book minimizes the gap between research and application in this important and growing area.
This book reviews several domains of polymer science, especially new trends in polymerization synthesis, physical-chemical properties, and inorganic systems. Composites and nanocomposites are also covered in this book, emphasizing nanotechnologies and their impact on the enhancement of physical and mechanical properties of these new materials. Kinetics and simulation are discussed and also considered as promising techniques for achieving chemistry and predicting physical property goals. This book presents a selection of interdisciplinary papers on the state of knowledge of each topic under consideration through a combination of overviews and original unpublished research.
Green polymer chemistry is now a global pursuit and comprises diverse disciplines, such as organic synthesis, polymer chemistry, material science, microbiology, molecular biology, catalysis, enzymology, environmental science, analytical chemistry, and chemical engineering. This field is equally active in the United States as well as Europe and Asia. Researchers, students, and people new to this field value a forum to meet and share ideas; this can take the form of a symposium dedicated to this field, or a special book that features the latest work done by leading practitioners. "Green Polymer Chemistry: Biobased Materials and Biocatalysis" is a symposium series put on by the American Chemical Society that has been very successful and serves to bring together a community of scientists with different backgrounds but with common research interests. In the August 2017 symposium in Washington, D.C., there were a total of 84 presentations and 16 posters (one of the largest symposia in the meeting). The symposium was structured into 10 sessions: -Bio-Based Materials: Industrial Perspectives -Developments in Biocatalysts -Green Biocatalytic Transformations -Chemical Catalytic Routes to Bio-Based Materials -New Reaction Strategies and Materials -Polysaccharide-Based Materials -Plant Oils and Ferulate-Based Materials -Bio-Based Thermosetting Resins -Therapeutics and Opto-Electronics -Further Applications of Bio-Based Materials Many of the leading researchers in this field accepted the invitation to speak, and they reported exciting findings in various areas, including new bio-based source materials, green conversion methods, new or improved processing methodologies, and green polymer-related products. For convenience, this book is organized into seven sections: novel bioengineered approaches; new enzymatic methodologies; new materials based on polysaccharides; bio-related polyesters, polyamides, and polyurethanes; bio-based phenolics and composites; bio-based monomers and resulting products; and bio-based solvents and additives.
All aspects of the personal care industry will be comprehensively discussed in Polymers for Personal Care Products and Cosmetics, including polymer synthesis, safety issues, and potential applications of a variety of materials in this large industry. There will be a broad overview of cosmetic ingredients, vehicles and finished products as well as coverage of the main methodologies for synthesis, safety and application testing. The reader will be provided with a solid background of the fundamentals of the area, before being brought up to date on the future of this field, along with discussion of the latest materials trends and future perspectives. Written by a world renowned expert in the area, the book will provide a unique look into this fast developing industry from insights obtained from key experts in industry and academia. The advantages and disadvantages of the technologies involved in the development of these materials are highlighted, providing a balanced and thorough review of the current state-of-the-art research. This book will appeal to researchers, academics and students working in polymer and materials chemistry, particularly those with an interest in personal care products.