Download Free New Perspectives On The Theory Of Inequalities For Integral And Sum Book in PDF and EPUB Free Download. You can read online New Perspectives On The Theory Of Inequalities For Integral And Sum and write the review.

This book provides new contributions to the theory of inequalities for integral and sum, and includes four chapters. In the first chapter, linear inequalities via interpolation polynomials and green functions are discussed. New results related to Popoviciu type linear inequalities via extension of the Montgomery identity, the Taylor formula, Abel-Gontscharoff's interpolation polynomials, Hermite interpolation polynomials and the Fink identity with Green’s functions, are presented. The second chapter is dedicated to Ostrowski’s inequality and results with applications to numerical integration and probability theory. The third chapter deals with results involving functions with nondecreasing increments. Real life applications are discussed, as well as and connection of functions with nondecreasing increments together with many important concepts including arithmetic integral mean, wright convex functions, convex functions, nabla-convex functions, Jensen m-convex functions, m-convex functions, m-nabla-convex functions, k-monotonic functions, absolutely monotonic functions, completely monotonic functions, Laplace transform and exponentially convex functions, by using the finite difference operator of order m. The fourth chapter is mainly based on Popoviciu and Cebysev-Popoviciu type identities and inequalities. In this last chapter, the authors present results by using delta and nabla operators of higher order.
Approach your problems from the right end It isn't !hat they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal 0/ Fa/her 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van GuJik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fie1ds does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "complete1y integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing c1assification schemes. They draw upon wide1y different sections of mathematics.
The monograph is written with a view to provide basic tools for researchers working in Mathematical Analysis and Applications, concentrating on differential, integral and finite difference equations. It contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools and will be a valuable source for a long time to come. It is self-contained and thus should be useful for those who are interested in learning or applying the inequalities with explicit estimates in their studies. - Contains a variety of inequalities discovered which find numerous applications in various branches of differential, integral and finite difference equations - Valuable reference for someone requiring results about inequalities for use in some applications in various other branches of mathematics - Highlights pure and applied mathematics and other areas of science and technology
"The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to "systematic" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational manifestations of Sturm's theory on the oscillatory behavior of certain ordinary differential equations. On the other hand, most geometric inequalities, including those of Sobolev and Log-Sobolev type, are simply expressions of the convexity of certain free energy functionals along the geodesics on the Wasserstein manifold of probability measures equipped with the optimal mass transport metric. Caffarelli-Kohn-Nirenberg and Hardy-Rellich-Sobolev type inequalities are then obtained by interpolating the above two classes of inequalities via the classical ones of Hölder. The subtle Moser-Onofri-Aubin inequalities on the two-dimensional sphere are connected to Liouville type theorems for planar mean field equations."--Publisher's website.
This book giving an exposition of the foundations of modern measure theory offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course, and, finally, more specialized topics partly covered by more than 850 exercises with detailed hints and references. Bibliographical comments and an extensive bibliography with 2000 works covering more than a century are provided.
This monograph uncovers the full capabilities of the Riemann integral. Setting aside all notions from Lebesgue’s theory, the author embarks on an exploration rooted in Riemann’s original viewpoint. On this journey, we encounter new results, numerous historical vignettes, and discover a particular handiness for computations and applications. This approach rests on three basic observations. First, a Riemann integrability criterion in terms of oscillations, which is a quantitative formulation of the fact that Riemann integrable functions are continuous a.e. with respect to the Lebesgue measure. Second, the introduction of the concepts of admissible families of partitions and modified Riemann sums. Finally, the fact that most numerical quadrature rules make use of carefully chosen Riemann sums, which makes the Riemann integral, be it proper or improper, most appropriate for this endeavor. A Modern View of the Riemann Integral is intended for enthusiasts keen to explore the potential of Riemann's original notion of integral. The only formal prerequisite is a proof-based familiarity with the Riemann integral, though readers will also need to draw upon mathematical maturity and a scholarly outlook.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
A complete presentation of a central part of convex geometry, from basics for beginners, to the exposition of current research.