Download Free New Opportunities For Sentiment Analysis And Information Processing Book in PDF and EPUB Free Download. You can read online New Opportunities For Sentiment Analysis And Information Processing and write the review.

Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts. New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.
The rise of internet and social media usage in the past couple of decades has presented a very useful tool for many different industries and fields to utilize. With much of the world’s population writing their opinions on various products and services in public online forums, industries can collect this data through various computational tools and methods. These tools and methods, however, are still being perfected in both collection and implementation. Sentiment analysis can be used for many different industries and for many different purposes, which could better business performance and even society. The Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines discusses the tools, methodologies, applications, and implementation of sentiment analysis across various disciplines and industries such as the pharmaceutical industry, government, and the tourism industry. It further presents emerging technologies and developments within the field of sentiment analysis and opinion mining. Covering topics such as electronic word of mouth (eWOM), public security, and user similarity, this major reference work is a comprehensive resource for computer scientists, IT professionals, AI scientists, business leaders and managers, marketers, advertising agencies, public administrators, government officials, university administrators, libraries, students and faculty of higher education, researchers, and academicians.
Social media sites are constantly evolving with huge amounts of scattered data or big data, which makes it difficult for researchers to trace the information flow. It is a daunting task to extract a useful piece of information from the vast unstructured big data; the disorganized structure of social media contains data in various forms such as text and videos as well as huge real-time data on which traditional analytical methods like statistical approaches fail miserably. Due to this, there is a need for efficient data mining techniques that can overcome the shortcomings of the traditional approaches. Data Mining Approaches for Big Data and Sentiment Analysis in Social Media encourages researchers to explore the key concepts of data mining, such as how they can be utilized on online social media platforms, and provides advances on data mining for big data and sentiment analysis in online social media, as well as future research directions. Covering a range of concepts from machine learning methods to data mining for big data analytics, this book is ideal for graduate students, academicians, faculty members, scientists, researchers, data analysts, social media analysts, managers, and software developers who are seeking to learn and carry out research in the area of data mining for big data and sentiment.
This book sheds light on the fundamental and innovative topics in information systems and their societal impact on individuals and organizations. It mainly focuses on the role of artificial intelligence in organizations, human-computer interaction, IS in education and industry, and IS security, privacy, and trust. The outcomes are expected to assist the decision-makers in formulating the required policies and procedures for using cutting-edge technologies.
Even though many data analytics tools have been developed in the past years, their usage in the field of cyber twin warrants new approaches that consider various aspects including unified data representation, zero-day attack detection, data sharing across threat detection systems, real-time analysis, sampling, dimensionality reduction, resource-constrained data processing, and time series analysis for anomaly detection. Further study is required to fully understand the opportunities, benefits, and difficulties of data analytics and the internet of things in today’s modern world. New Approaches to Data Analytics and Internet of Things Through Digital Twin considers how data analytics and the internet of things can be used successfully within the field of digital twin as well as the potential future directions of these technologies. Covering key topics such as edge networks, deep learning, intelligent data analytics, and knowledge discovery, this reference work is ideal for computer scientists, industry professionals, researchers, scholars, practitioners, academicians, instructors, and students.
Computational science, in collaboration with engineering, acts as a bridge between hypothesis and experimentation. It is essential to use computational methods and their applications in order to automate processes as many major industries rely on advanced modeling and simulation. Computational science is inherently interdisciplinary and can be used to identify and evaluate complicated systems, foresee their performance, and enhance procedures and strategies. Applications of Computational Science in Artificial Intelligence delivers technological solutions to improve smart technologies architecture, healthcare, and environmental sustainability. It also provides background on key aspects such as computational solutions, computation framework, smart prediction, and healthcare solutions. Covering a range of topics such as high-performance computing and software infrastructure, this reference work is ideal for software engineers, practitioners, researchers, scholars, academicians, instructors, and students.
Post COVID-19 pandemic, researchers have been evaluating the healthcare system for improvements that can be made. Understanding global healthcare systems’ operations is essential to preventative measures to be taken for the next global health crisis. A key part to bettering healthcare is the implementation of information management and One Health. The Handbook of Research on Essential Information Approaches to Aiding Global Health in the One Health Context evaluates the concepts in global health and the application of essential information management in healthcare organizational strategic contexts. This text promotes understanding in how evaluation health and information management are decisive for health planning, management, and implementation of the One Health concept. Covering topics like development partnerships, global health, and the nature of pandemics, this text is essential for health administrators, policymakers, government officials, public health officials, information systems experts, data scientists, analysts, health information science and global health scholars, researchers, practitioners, doctors, students, and academicians.
The term "data" being mostly used, experimented, analyzed, and researched, "Data Science and its Applications" finds relevance in all domains of research studies including science, engineering, technology, management, mathematics, and many more in wide range of applications such as sentiment analysis, social medial analytics, signal processing, gene analysis, market analysis, healthcare, bioinformatics etc. The book on Data Science and its applications discusses about data science overview, scientific methods, data processing, extraction of meaningful information from data, and insight for developing the concept from different domains, highlighting mathematical and statistical models, operations research, computer programming, machine learning, data visualization, pattern recognition and others. The book also highlights data science implementation and evaluation of performance in several emerging applications such as information retrieval, cognitive science, healthcare, and computer vision. The data analysis covers the role of data science depicting different types of data such as text, image, biomedical signal etc. useful for a wide range of real time applications. The salient features of the book are: Overview, Challenges and Opportunities in Data Science and Real Time Applications Addressing Big Data Issues Useful Machine Learning Methods Disease Detection and Healthcare Applications utilizing Data Science Concepts and Deep Learning Applications in Stock Market, Education, Behavior Analysis, Image Captioning, Gene Analysis and Scene Text Analysis Data Optimization Due to multidisciplinary applications of data science concepts, the book is intended for wide range of readers that include Data Scientists, Big Data Analysists, Research Scholars engaged in Data Science and Machine Learning applications.