Download Free New Insights In Stability Structure And Properties Of Porous Materials Book in PDF and EPUB Free Download. You can read online New Insights In Stability Structure And Properties Of Porous Materials and write the review.

This book is a printed edition of the Special Issue "New Insights in Stability, Structure and Properties of Porous Materials" that was published in Minerals
Membrane techniques provide a broad science and technology base. Although there are several books in the traditional membrane field, there is a great need for a highly comprehensive book. This refereed book covers materials from highly respected researchers. This title is highly multidisciplinary in nature and should be extremely valuable to scientists and engineers involved in a variety of activities. Students and faculty members around the world will find this title to be an excellent reference book. - Invited contributions from leading researchers in the field - Coverage of topic is of value to scientists/engineers working in a variety of related fields [separations/reactions, advanced biofunctional materials, contactor designs] - Aims to fill market gap for a highly comprehensive book containing advances in both synthetic and biofunctional/bimimetic membranes
High-pressure Molecular Spectroscopy describes examples of the applications of several spectroscopic methods to investigate the behavior of various chemical systems under high pressures, including guest-host interactions, chemical reactions, molecule-based multiferroics, lanthanide ion-doped glasses, and organic, inorganic and organometallic materials. The techniques involved include: Luminescence studies Inelastic neutron scattering Infrared and Raman studies Synchrotron X-ray diffraction
Radioactive wastes are waste types containing radioactive chemical elements that do not have a practical purpose. They are sometimes the products of a nuclear processes, such as nuclear fission. However, other industries not directly connected to the nuclear industry can produce large quantities of radioactive waste. For instance, over the past 20 years it is estimated that just the oil-producing endeavours of the US have accumulated 8 million tons of radioactive wastes. The majority of radioactive waste is "low-level waste", meaning it has low levels of radioactivity per mass or volume. This type of waste often consists of used protective clothing, which is only slightly contaminated but still dangerous in case of radioactive contamination of a human body through ingestion, inhalation, absorption, or injection. The issue of disposal methods for nuclear waste was one of the most pressing current problems the international nuclear industry faced when trying to establish a long term energy production plan, yet there was hope it could be safely solved. In the U.S., the DOE acknowledged much progress in addressing the waste problems of the industry, and successful remediation of some contaminated sites, yet also major uncertainties and sometimes complications and setbacks in handling the issue properly, cost effectively, and in the projected time frame. In other countries with lower ability or will to maintain environmental integrity the issue would be more problematic. This new book presents the latest research in the field.
This first book devoted to this hot field of science covers materials with bimodal, trimodal and multimodal pore size, with an emphasis on the successful design, synthesis and characterization of all kinds of hierarchically porous materials using different synthesis strategies. It details formation mechanisms related to different synthesis strategies while also introducing natural phenomena of hierarchy and perspectives of hierarchical science in polymers, physics, engineering, biology and life science. Examples are given to illustrate how to design an optimal hierarchically porous material for specific applications ranging from catalysis and separation to biomedicine, photonics, and energy conversion and storage. With individual chapters written by leading experts, this is the authoritative treatment, serving as an essential reference for researchers and beginners alike.
Composites from Renewable and Sustainable Materials consists of 16 chapters written by international subject matter experts investigating the characteristic and current application of materials from renewable and sustainable sources. The reader will develop a deeper understanding about the concepts related to renewable materials, biomaterials, natural fibers, biodegradable composites, starch, and recycled materials. This book will serve as the starting point for materials science researchers, engineers, and technologists from the diverse backgrounds in physics, chemistry, biology, materials science, and engineering who want to know and better understand the fundamental aspects and current applications of renewable and sustainable materials in several applications.
This volume brings together papers from the multidisciplinary Dimension Stone 2004 Conference, held in Prague. Looking at all aspects of this useful and attractive building material, experts from many fields of research offer their perspectives from geology, rock mechanics, geotechnics, the stone extractive industry, restoration work and architecture. The result is a wide-ranging and practical handbook for geologists, engineers and architects covering: - geological studies of traditional local stone types - advanced rock fabric and rock mechanics studies applied to dimension stone research - application of dimension stone databases for historical research and for stone marketing - GIS application to quarry planning - aspects of dimension stone deterioration - bowing of natural stone cladding and prevention - processing and benefits of waste from the stone industry.
Low dielectric constant materials are an important component of microelectronic devices. This comprehensive book covers the latest low-dielectric-constant (low-k) materials technology, thin film materials characterization, integration and reliability for back-end interconnects and packaging applications in microelectronics. Highly informative contributions from leading academic and industrial laboratories provide comprehensive information about materials technologies for
MXenes as Surface-Active Advanced Materials: From Basic Research to Industrial and Biomedical Applications covers numerous aspects of the basic science and applications of MXenes, including synthesis, classification, structure, and properties, as well as applications in gas storage and separation, environment and catalysis, tribology, biomedicine, and more. The first part of the book focuses on the characterization, synthesis and properties of MXenes, including surface/ interface chemistry properties as well as metal- MXenes interaction. The second part illustrates the current and potential applications of these nanomaterials within industry and biomedicine. These include a through discussion of surface chemistry and surface interaction of MXenes with different materials, and the definition of the current and future applications based on the MXenes surface chemistry. This book provides a complete exploration of surface and interface applications of MXenes, highlighting established research and future perspectives, and is a valuable resource to scientists and professionals in the field of material science, nanotechnology, and 2D material chemistry. - Discusses fundamental characteristics, properties, synthesis methods, and processing techniques of MXenes - Provides state-of–the-art information on the most recent advances, including theoretical and experimental studies and new applications - Includes recent studies concerning surface chemistry and surface interaction of MXenes with different materials