Download Free New Frontiers In Gravitation Book in PDF and EPUB Free Download. You can read online New Frontiers In Gravitation and write the review.

Covering all aspects of gravitation in a contemporary style, this advanced textbook is ideal for graduate students and researchers in all areas of theoretical physics. The 'Foundation' section develops the formalism in six chapters, and uses it in the next four chapters to discuss four key applications - spherical spacetimes, black holes, gravitational waves and cosmology. The six chapters in the 'Frontier' section describe cosmological perturbation theory, quantum fields in curved spacetime, and the Hamiltonian structure of general relativity, among several other advanced topics, some of which are covered in-depth for the first time in a textbook. The modular structure of the book allows different sections to be combined to suit a variety of courses. Over 200 exercises are included to test and develop the reader's understanding. There are also over 30 projects, which help readers make the transition from the book to their own original research.
This book focuses on one mechanism in black hole physics which has proven to be universal, multifaceted and with a rich phenomenology: rotational superradiance. This is an energy extraction process, whereby black holes can deposit their rotational energy in their surroundings, leading to Penrose processes, black-hole bombs, and even Hawking radiation. Black holes are key players in star formation mechanisms and as engines to some of the most violent events in our universe. Their simplicity and compactness make them perfect laboratories, ideally suited to probe new fields or modifications to the theory of gravity. Thus, black holes can also be used to probe some of the most important open problems in physics, including the nature of dark matter or the strong CP problem in particle physics. This monograph is directed to researchers and graduate students and provides a unified view of the subject, covering the theoretical machinery, experimental efforts in the laboratory, and astrophysics searches. It is focused on recent developments and works out a number of novel examples and applications, ranging from fundamental physics to astrophysics. Non-specialists with a scientific background should also find this text a valuable resource for understanding the critical issues of contemporary research in black-hole physics. This second edition stresses the role of ergoregions in superradiance, and completes its catalogue of energy-extraction processes. It presents a unified description of instabilities of spinning black holes in the presence of massive fields. Finally, it covers the first experimental observation of superradiance, and reviews the state-of-the-art in the searches for new light fields in the universe using superradiance as a mechanism.
The Feynman Lectures on Gravitation are based on notes prepared during a course on gravitational physics that Richard Feynman taught at Caltech during the 1962-63 academic year. For several years prior to these lectures, Feynman thought long and hard about the fundamental problems in gravitational physics, yet he published very little. These lectures represent a useful record of his viewpoints and some of his insights into gravity and its application to cosmology, superstars, wormholes, and gravitational waves at that particular time. The lectures also contain a number of fascinating digressions and asides on the foundations of physics and other issues.Characteristically, Feynman took an untraditional non-geometric approach to gravitation and general relativity based on the underlying quantum aspects of gravity. Hence, these lectures contain a unique pedagogical account of the development of Einstein's general theory of relativity as the inevitable result of the demand for a self-consistent theory of a massless spin-2 field (the graviton) coupled to the energy-momentum tensor of matter. This approach also demonstrates the intimate and fundamental connection between gauge invariance and the principle of equivalence.
This book describes a paradigm change in modern physics from the philosophy and mathematical expression of the quantum theory to those of general relativity. The approach applies to all domains - from elementary particles to cosmology. The change is from the positivistic views in which atomism, nondeterminism and measurement are fundamental, to a holistic view in realism, wherein matter - electrons, galaxies, - are correlated modes of a single continuum, the universe. A field that unifies electromagnetism, gravity and inertia is demonstrated explicitly, with new predictions, in terms of quaternion and spinor field equations in a curved spacetime. Quantum mechanics emerges as a linear, flatspace approximation for the equations of inertia in general relativity.
Spacetime physics -- Physics in flat spacetime -- The mathematics of curved spacetime -- Einstein's geometric theory of gravity -- Relativistic stars -- The universe -- Gravitational collapse and black holes -- Gravitational waves -- Experimental tests of general relativity -- Frontiers
This volume is a compilation of lectures delivered at the TASI 2015 summer school, 'New Frontiers in Fields and Strings', held at the University of Colorado Boulder in June 2015. The school focused on topics in theoretical physics of interest to contemporary researchers in quantum field theory and string theory. The lectures are accessible to graduate students in the initial stages of their research careers.
One of the most challenging problems of contemporary theoretical physics is the mathematically rigorous construction of a theory which describes gravitation and the other fundamental physical interactions within a common framework. The physical ideas which grew from attempts to develop such a theory require highly advanced mathematical methods and radically new physical concepts. This book presents different approaches to a rigorous unified description of quantum fields and gravity. It contains a carefully selected cross-section of lively discussions which took place in autumn 2010 at the fifth conference "Quantum field theory and gravity - Conceptual and mathematical advances in the search for a unified framework" in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.