Download Free New Examples Of Frobenius Extensions Book in PDF and EPUB Free Download. You can read online New Examples Of Frobenius Extensions and write the review.

This volume is based on the author's lecture courses to algebraists at Munich and at Goteborg. He presents, for the first time in book form, a unified approach from the point of view of Frobenius algebras/extensions to diverse topics, such as Jones' subfactor theory, Hopf algebras and Hopf subalgebras, the Yang-Baxter Equation and 2-dimensional topological quantum field theories.
This volume is based on the author's lecture courses to algebraists at Munich and at Goteborg. He presents a unified approach from the point of view of Frobenius algebras/extensions. The book is intended for graduate students and research mathematicians working in algebra and topology.
Among all areas of mathematics, algebra is one of the best suited to find applications within the frame of our booming technological society. The thirty-eight articles in this volume encompass the proceedings of the International Conference on Algebra and Its Applications (Athens, OH, 1999), which explored the applications and interplay among the disciplines of ring theory, linear algebra, and coding theory. The presentations collected here reflect the dialogue between mathematicians involved in theoretical aspects of algebra and mathematicians involved in solving problems where state-of-the-art research tools may be used and applied. This Contemporary Mathematics series volume communicates the potential for collaboration among those interested in exploring the wealth of applications for abstract algebra in fields such as information and coding. The expository papers would serve well as supplemental reading in graduate seminars.
The 23 articles in this volume encompass the proceedings of the International Conference on Modules and Comodules held in Porto (Portugal) in 2006. The conference was dedicated to Robert Wisbauer on the occasion of his 65th birthday. These articles reflect Professor Wisbauer's wide interests and give an overview of different fields related to module theory. While some of these fields have a long tradition, others represented here have emerged in recent years.
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers and advanced students.
Extending Structures: Fundamentals and Applications treats the extending structures (ES) problem in the context of groups, Lie/Leibniz algebras, associative algebras and Poisson/Jacobi algebras. This concisely written monograph offers the reader an incursion into the extending structures problem which provides a common ground for studying both the extension problem and the factorization problem. Features Provides a unified approach to the extension problem and the factorization problem Introduces the classifying complements problem as a sort of converse of the factorization problem; and in the case of groups it leads to a theoretical formula for computing the number of types of isomorphisms of all groups of finite order that arise from a minimal set of data Describes a way of classifying a certain class of finite Lie/Leibniz/Poisson/Jacobi/associative algebras etc. using flag structures Introduces new (non)abelian cohomological objects for all of the aforementioned categories As an application to the approach used for dealing with the classification part of the ES problem, the Galois groups associated with extensions of Lie algebras and associative algebras are described
This self-contained book dedicated to Drinfeld's quasi-Hopf algebras takes the reader from the basics to the state of the art.
Focuses on the interaction between algebra and algebraic geometry, including high-level research papers and surveys contributed by over 40 top specialists representing more than 15 countries worldwide. Describes abelian groups and lattices, algebras and binomial ideals, cones and fans, affine and projective algebraic varieties, simplicial and cellular complexes, polytopes, and arithmetics.
We prove that the kernel of the action of the modular group on the center of a semisimple factorizable Hopf algebra is a congruence subgroup whenever this action is linear. If the action is only projective, we show that the projective kernel is a congruence subgroup. To do this, we introduce a class of generalized Frobenius-Schur indicators and endow it with an action of the modular group that is compatible with the original one.
Mathematics provides a language in which to formulate the laws that govern nature. It is a language proven to be both powerful and effective. In the quest for a deeper understanding of the fundamental laws of physics, one is led to theories that are increasingly difficult to put to the test. In recent years, many novel questions have emerged in mathematical physics, particularly in quantum field theory. Indeed, several areas of mathematics have lately become increasingly influentialin physics and, in turn, have become influenced by developments in physics. Over the last two decades, interactions between mathematicians and physicists have increased enormously and have resulted in a fruitful cross-fertilization of the two communities. This volume contains the plenary talks fromthe international symposium on Noncommutative Geometry and Representation Theory in Mathematical Physics held at Karlstad University (Sweden) as a satellite conference to the Fourth European Congress of Mathematics. The scope of the volume is large and its content is relevant to various scientific communities interested in noncommutative geometry and representation theory. It offers a comprehensive view of the state of affairs for these two branches of mathematical physics. The book is suitablefor graduate students and researchers interested in mathematical physics.