Download Free New Distance And Similarity Measures Of Single Value Neutrosophic Sets With Application In Multi Criteria Decision Making Book in PDF and EPUB Free Download. You can read online New Distance And Similarity Measures Of Single Value Neutrosophic Sets With Application In Multi Criteria Decision Making and write the review.

The processing of uncertainty information has gradually became one of the hot issues in arti cial intelligence eld, and the infor- mation measures of uncertainty information processing are of importance. Single value neutrosophic sets (SVNSs) provide us a exible mathematical framework to process uncertainty information. In this paper, we mainly consider the measures of SVNSs. The existing information measures mostly are constructed based on the two typical inclusion relations about single value neutrosopgic sets. However, there exist some practical problems that do not apply to the two typical inclusion relations. Therefore, there exists another inclusion relation which is called the type-3 inclusion relation about SVNSs.
Hausdorff distance is one of the important distance measures to study the degree of dissimilarity between two sets that had been used in various fields under fuzzy environments. Among those, the framework of single-valued neutrosophic sets (SVNSs) is the one that has more potential to explain uncertain, inconsistent and indeterminate information in a comprehensive way. And so, Hausdorff distance for SVNSs is important. Thus, we propose two novel schemes to calculate the Hausdorff distance and its corresponding similarity measures (SMs) for SVNSs. In doing so, we firstly develop the two forms of Hausdorff distance between SVNSs based on the definition of Hausdorff metric between two sets. We then use these new distance measures to construct several SMs for SVNSs. Some mathematical theorems regarding the proposed Hausdorff distances for SVNSs are also proven to strengthen its theoretical properties. In order to show the exact calculation behavior and distance measurement mechanism of our proposed methods in accordance with the decorum of Hausdorff metric, we utilize an intuitive numerical example that demonstrate the novelty and practicality of our proposed measures. Furthermore, we develop a multi-criteria decision making (MCDM) method under single-valued neutrosophic environment using the proposed SMs based on our defined Hausdorff distance measures, called as a single-valued neutrosophic MCDM (SVN-MCDM) method. In this connection, we employ our proposed SMs to compute the degree of similarity of each option with the ideal choice to identify the best alternative as well as to perform an overall ranking of the alternatives under study. We then apply our proposed SVN-MCDM scheme to solve two real world problems of MCDM under single-valued neutrosophic environment to show its effectiveness and application.
Single-valued neutrosophic sets (SVNSs) handling the uncertainties characterized by truth, indeterminacy, and falsity membership degrees, area more flexible way to capture uncertainty.
In this paper, a definition of quadripartitioned single valued bipolar neutrosophic set (QSVBNS) is introduced as a generalization of both quadripartitioned single valued neutrosophic sets (QSVNS) and bipolar neutrosophic sets (BNS). There is an inherent symmetry in the definition of QSVBNS. Some operations on them are defined and a set theoretic study is accomplished. Various similarity measures and distance measures are defined on QSVBNS. An algorithm relating to multi-criteria decision making problem is presented based on quadripartitioned bipolar weighted similarity measure. Finally, an example is shown to verify the flexibility of the given method and the advantage of considering QSVBNS in place of fuzzy sets and bipolar fuzzy sets.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles from this issue: BMBJ-neutrosophic ideals in BCK/BCI-algebras, Neutrosophic General Finite Automata, Generalized Neutrosophic Exponential map, Implementation of Neutrosophic Function Memberships Using MATLAB Program.
This volume is a collection of ten papers by contributors F. Smarandache, F. Yuhua, K. Mondal, S. Pramanik, S. Broumi, J. Ye, A. A. Salama,, N. Easa, S. A. Elhafez, M. M. Lotfy, L. Kong, Y. Wu, P. Biswas, B. C. Giri, A. Mukkerjee, and S. Sarkar, focusing on a new kind of algebraic structures called (T, I, F)- Neutrosophic Structures; Expanding Uncertainty Principle to Certainty-Uncertainty Principles with Neutrosophy and Quad-stage Methods; Rough Neutrosophic Multi-Attribute Decision-Making Based on Rough Accuracy Score Function; an Extended TOPSIS Method for Multiple Attribute Decision Making based on Interval Neutrosophic Uncertain Linguistic Variable; Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System; Fault Diagnosis Method of Gasoline Engines Using the Cosine Similarity Measure of Neutrosophic Numbers; Cosine Similarity Measure Based Multi-attribute Decision-making with Trapezoidal Fuzzy Neutrosophic Numbers; Thesis-Antithesis-Neutrothesis, and Neutrosynthesis; Negating Four Color Theorem with Neutrosophy and Quadstage Method; and A new method of measuring similarity between two neutrosophic soft sets and its application in pattern recognition problems.
This eighth volume of Collected Papers includes 75 papers comprising 973 pages on (theoretic and applied) neutrosophics, written between 2010-2022 by the author alone or in collaboration with the following 102 co-authors (alphabetically ordered) from 24 countries: Mohamed Abdel-Basset, Abduallah Gamal, Firoz Ahmad, Ahmad Yusuf Adhami, Ahmed B. Al-Nafee, Ali Hassan, Mumtaz Ali, Akbar Rezaei, Assia Bakali, Ayoub Bahnasse, Azeddine Elhassouny, Durga Banerjee, Romualdas Bausys, Mircea Boșcoianu, Traian Alexandru Buda, Bui Cong Cuong, Emilia Calefariu, Ahmet Çevik, Chang Su Kim, Victor Christianto, Dae Wan Kim, Daud Ahmad, Arindam Dey, Partha Pratim Dey, Mamouni Dhar, H. A. Elagamy, Ahmed K. Essa, Sudipta Gayen, Bibhas C. Giri, Daniela Gîfu, Noel Batista Hernández, Hojjatollah Farahani, Huda E. Khalid, Irfan Deli, Saeid Jafari, Tèmítópé Gbóláhàn Jaíyéolá, Sripati Jha, Sudan Jha, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, M. Karthika, Kawther F. Alhasan, Giruta Kazakeviciute-Januskeviciene, Qaisar Khan, Kishore Kumar P K, Prem Kumar Singh, Ranjan Kumar, Maikel Leyva-Vázquez, Mahmoud Ismail, Tahir Mahmood, Hafsa Masood Malik, Mohammad Abobala, Mai Mohamed, Gunasekaran Manogaran, Seema Mehra, Kalyan Mondal, Mohamed Talea, Mullai Murugappan, Muhammad Akram, Muhammad Aslam Malik, Muhammad Khalid Mahmood, Nivetha Martin, Durga Nagarajan, Nguyen Van Dinh, Nguyen Xuan Thao, Lewis Nkenyereya, Jagan M. Obbineni, M. Parimala, S. K. Patro, Peide Liu, Pham Hong Phong, Surapati Pramanik, Gyanendra Prasad Joshi, Quek Shio Gai, R. Radha, A.A. Salama, S. Satham Hussain, Mehmet Șahin, Said Broumi, Ganeshsree Selvachandran, Selvaraj Ganesan, Shahbaz Ali, Shouzhen Zeng, Manjeet Singh, A. Stanis Arul Mary, Dragiša Stanujkić, Yusuf Șubaș, Rui-Pu Tan, Mirela Teodorescu, Selçuk Topal, Zenonas Turskis, Vakkas Uluçay, Norberto Valcárcel Izquierdo, V. Venkateswara Rao, Volkan Duran, Ying Li, Young Bae Jun, Wadei F. Al-Omeri, Jian-qiang Wang, Lihshing Leigh Wang, Edmundas Kazimieras Zavadskas.
Contributors to current issue (listed in papers’ order): Ibrahim Yasser, Abeer Twakol, A. A. Abd El-Khalek, A. A. Salama, Ahmed Sharaf Al-Din, Issam Abu Al-Qasim, Rafif Alhabib, Magdy Badran, Remya P. B, Francina Shalini, Masoud Ghods, Zahra Rostami, A. Sahaya Sudha, Luiz Flavio Autran Monteiro Gomes, K.R. Vijayalakshmi, Prakasam Muralikrishna, Surya Manokaran, Nidhi Singh, Avishek Chakraborty, Soma Bose Biswas, Malini Majumdar, Rakhal Das, Binod Chandra Tripathy, Nidhi Singh, Avishek Chakraborty, Nilabhra Paul, Deepshikha Sarma, Akash Singh, Uttam Kumar Bera, Fatimah M. Mohammed, Sarah W. Raheem, Muhammad Riaz, Florentin Smarandache, Faruk Karaaslan, Masooma Raza Hashmi, Iqra Nawaz, Kousik Das, Sovan Samanta, Kajal De, Xavier Encarnacion, Nivetha Martin, I. Pradeepa, N. Ramila Gandhi, P. Pandiammal, Aiman Muzaffar, Md Tabrez Nafis, Shahab Saquib Sohail, Abhijit Saha, Jhulaneswar Baidya, Debjit Dutta, Irfan Deli, Said Broumi, Mohsin Khalid, Neha Andaleeb Khalid, Md. Hanif Page, Qays Hatem Imran, Shilpi Pal, S. Satham Hussain, Saeid Jafari, N. Durga, Hanieh Shambayati, Mohsen Shafiei Nikabadi, Seyed Mohammad, Ali Khatami Firouzabadi, Mohammad Rahmanimanesh, Mujahid Abbas, Ghulam Murtaza, K. Porselvi, B. Elavarasan, Y. B. Jun, Chinnadurai V, Sindhu M P, K.Radhika, K. Arun Prakash, Malayalan Lathamaheswari, Ruipu Tan, Deivanayagampillai Nagarajan, Talea Mohamed, Assia Bakali, Nivetha Martin, R. Dhavaseelan, Ali Hussein Mahmood Al-Obaidi, Suman Das, Surapati Pramanik, Madad Khan, Muhammad Zeeshan, Saima Anis, Abdul Sami Awan, M. Sarwar Sindhu, Tabasam Rashid, Agha Kashif, Rajesh Kumar Saini, Atul Sangal, Manisha.
Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been an important tool in the application of various areas such as data mining, decision making, e-learning, engineering, medicine, social science, and some more.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).