Download Free New Developments In Adsorption Separation Of Small Molecules By Zeolites Book in PDF and EPUB Free Download. You can read online New Developments In Adsorption Separation Of Small Molecules By Zeolites and write the review.

This volume compiles and discusses the fundamental and multidisciplinary knowledge on adsorption and separation processes using zeolites as adsorbents. Over the last decade, a large amount of research has been carried out for the development of zeolites as adsorbents. However, there is still a growing interest to increase the understanding of such selective adsorbents. Therefore, synthesis strategies and new approaches for developing new selective zeolite adsorbents for gas separation are presented in the first chapter. In addition, a chapter focused on adsorption characterization techniques of microporous materials is included. This will be helpful for advanced readers, since the new IUPAC recommendations for microporous characterization are not still widely employed by the zeolite community. Experimental and theoretical aspects of economically and environmentally relevant separations, which have been successfully carried out with zeolites, are discussed in detail in subsequent chapters. Finally, industrial zeolite based adsorption and separation processes as well as current perspectives for new zeolite based separations, and improvements of current technologies are presented.
A cohesive and insightful compilation of resources explaining the latest discoveries and methods in the field of nanoporous materials In Artificial Intelligence for Zeolites and Nanoporous Materials: Design, Synthesis and Properties Prediction a team of distinguished researchers delivers a robust compilation of the latest knowledge and most recent developments in computational chemistry, synthetic chemistry, and artificial intelligence as it applies to zeolites, porous molecular materials, covalent organic frameworks and metal-organic frameworks. The book presents a common language that unifies these fields of research and advances the discovery of new nanoporous materials. The editors have included resources that describe strategies to synthesize new nanoporous materials, construct databases of materials, structure directing agents, and synthesis conditions, and explain computational methods to generate new materials. They also offer material that discusses AI and machine learning algorithms, as well as other, similar approaches to the field. Readers will also find a comprehensive approach to artificial intelligence applied to and written in the language of materials chemistry, guiding the reader through the fundamental questions on how far computer algorithms and numerical representations can drive our search of new nanoporous materials for specific applications. Designed for academic researchers and industry professionals with an interest in synthetic nanoporous materials chemistry, Artificial Intelligence for Zeolites and Nanoporous Materials: Design, Synthesis and Properties Prediction will also earn a place in the libraries of professionals working in large energy, chemical, and biochemical companies with responsibilities related to the design of new nanoporous materials.
Many elements and inorganic compounds play an extraordinary role in daily life for numerous applications, e. g., construction materials, inorganic pigments, inorganic coatings, steel, glass, technical gases, energy storage and conversion materials, fertilizers, homogeneous and heterogeneous catalysts, photofunctional materials, semiconductors, superconductors, soft- and hard magnets, technical ceramics, hard materials, or biomedical and bioactive materials. The present book is written by experienced authors who give a comprehensive overview on the many chemical and physico-chemical aspects related to application of inorganic compounds and materials in order to introduce senior undergraduate and postgraduate students (chemists, physicists, materials scientists, engineers) into this broad field.
The term “Separation Processes” refers to processes that transform a stream containing a mixture of two or more components into pure or concentrated single component product streams. During the last decades, due to the development of adsorption processes and emerging new porous materials, the adsorption processes are considered to be effective and economic means for separation of different gas and liquid mixtures at different operating conditions. The heart of the adsorption process is the adsorbent, whose performance determines the efficiency of the separation system. As a result, selecting the appropriate adsorbent is crucial for the specific gas and liquid mixture separation in terms of selectivity, capacity, recovery, and life time. In order to determine the optimum adsorbent for a particular separation of interest, thorough characterization is carried out involving the following measurements and analysis: surface (textural) characterization, adsorption equilibria, and detailed kinetics, e.g., diffusivity. This study provides systematic investigations of measurement techniques that were developed to determine, kinetics, equilibrium and the governing mass transfer mechanism for single and multi-component adsorption in nanoporous adsorbents. The main objective is focused on development and application of new and fast screening methods for adsorbents’ selection, and new as well as extend traditional methodologies to measure equilibrium, and selectivity of gas mixtures and liquid solutions. One of the screening techniques, for liquid adsorption developed in this study, is based on gas chromatography (GC) headspace technique. A new methodology was developed using liquid calibration technique. In addition, the earlier developed vapor calibration headspace technique was extended to non-ideal solutions. The newly developed technique was shown to provide significant advantages, e.g., more time effective as a result of direct liquid composition determination from the sampled vapor phase and using the simpler experimental setup by eliminating the injection of separate vapor streams required by the vapor calibration technique. Binary and multi-component solutions were also analyzed by applying both GC headspace techniques. Another important fast screening technique (differential column technique) was developed in this study for binary gas mixture analysis, e.g., adsorption of binary mixtures of CO2, CO and C2H4 on NaY zeolite. The novel technique measures binary mixture isotherms accurately and time effectively utilizing a simple experimental setup based on the fractional desorption measurements. The proposed techniques were compared to standard characterization techniques, e.g., gravimetric and chromatographic, to prove reliability of the proposed methods. A number of adsorption systems, e.g., CO2, CO, light hydrocarbons, ethylene and xylene isomers on zeolites and carbon molecular sieves, were chosen for the development and application of these methods. In addition, an in depth study was conducted to elucidate sorption mechanisms of adsorption systems where separation is controlled by complex kinetic-steric effects, as in a case of carbon molecular sieves (CMS) for separation of smaller molecules.
Separation of gas mixtures by adsorption is a well established separation process technology and is used to serve chemical, petroleum and material processing industries. In addition to above applications, it also presents opportunities for reducing green house gas emissions and cost reductions via efficient separation and reuse of waste gas mixtures. Innovations in sorbent development and adsorption process cycles have made zeolites as a key separation tool for industries. This monograph provides a single and comprehensive source of knowledge for cation modified zeolite-A, Zeolite-X, and Zeolite ZSM-5 based adsorbents for carbon monoxide, methane and nitrogen gas mixture separation. This monograph also presents basics of gas separation, ion exchange and deals with interactions between gas molecules and zeolites. The undertaken studies are highly significant and enhance our knowledge and understanding of mechanisms of gas separation by zeolites, and present their potential applications for separation of different gas mixtures. This monograph will enhance the reputation and attractiveness of zeolites for researchers working in the field of adsorbent development for gas separation.
This first book to offer a practical overview of zeolites and their commercial applications provides a practical examination of zeolites in three capacities. Edited by a globally recognized and acclaimed leader in the field with contributions from major industry experts, this handbook and ready reference introduces such novel separators as zeolite membranes and mixed matrix membranes. The first part of the book discusses the history and chemistry of zeolites, while the second section focuses on separation processes. The third and final section treats zeolites in the field of catalysis. The three sections are unified by an examination of how the unique properties of zeolites allow them to function in different capacities as an adsorbent, a membrane and as a catalyst, while also discussing their impact within the industry.
The field of quantum and molecular simulations has experienced strong growth since the time of the early software packages. A recent study, showed a large increase in the number of people publishing papers based on ab initio methods from about 3,000 in 1991 to roughly 20,000 in 2009, with particularly strong growth in East Asia. Looking to the futu
Widely used in adsorption, catalysis and ion exchange, the family of molecular sieves such as zeolites has been greatly extended and many advances have recently been achieved in the field of molecular sieves synthesis and related porous materials. Chemistry of Zeolites and Related Porous Materials focuses on the synthetic and structural chemistry of the major types of molecular sieves. It offers a systematic introduction to and an in-depth discussion of microporous, mesoporous, and macroporous materials and also includes metal-organic frameworks. Provides focused coverage of the key aspects of molecular sieves Features two frontier subjects: molecular engineering and host-guest advanced materials Comprehensively covers both theory and application with particular emphasis on industrial uses This book is essential reading for researches in the chemical and materials industries and research institutions. The book is also indispensable for researches and engineers in R&D (for catalysis) divisions of companies in petroleum refining and the petrochemical and fine chemical industries.
Volume 1 of the book discusses such topics as absorption, chromatography, crystallization, microcapsules, adsubble methods, chemical complexing, parametric pumping, molecular sieve adsorption, enzyme membrane systems, immobilized solvent membranes and liquid surfactant membranes.
The Handbook of Zeolite Science and Technology offers effective analyses ofsalient cases selected expressly for their relevance to current and prospective research. Presenting the principal theoretical and experimental underpinnings of zeolites, this international effort is at once complete and forward-looking, combining fundamental