Download Free New Concepts And Discoveries Book in PDF and EPUB Free Download. You can read online New Concepts And Discoveries and write the review.

Scientific analyses of the geology, metallogeny, and mineralization of gold, silver and other high-value elements in the western USATechnical details on working mines, exploration results, new depositsPresentations produced with the United States Geological Survey, Society of Economic GeologistsTwo-volume book set printed in full color with full-text searchable CD-ROM Produced under the auspices of the Geological Society of Nevada and published every five years, this two-volume book of peer-reviewed papers focuses on the geological analysis of ore-rich deposits in the western United States, especially ones containing gold and other high-value elements. Hundreds of stratigraphic, lithographic, remote-sensing and core sample examples are presented, particularly of areas likely to host Carlin-type gold deposits. The two volumes contain a wealth of data on specifically named mines, as well as technical information on high-potential areas for exploration. The book is profusely illustrated with full-color maps, photographs and charts for geology and mining engineering. A searchable CD accompanies the book and includes the full text of papers from the printed book, as well as abstracts and information from poster sessions not found in the printed book. Chapters in the text are fully refereed versions of presentations originally delivered at a symposium supported by the Geological Society of Nevada, along with the United States Geological Survey, Society of Economic Geologists and the Nevada Bureau of Mines. Sample key words: metallogeny, gold, epithermal ore, magmatism, Carlin trend, square array void mapping (SAVM), porphyry copper, tungsten, orogeny, lithogeochemistry, 3-D resistivity and modeling, fault-surface mapping, airborne electromagnetics and more. *The CD-ROM displays figures and illustrations in articles in full color along with a title screen and main menu screen. Each user can link to all papers from the Table of Contents and Author Index and also link to papers and front matter by using the global bookmarks which allow navigation of the entire CD-ROM from every article. Search features on the CD-ROM can be by full text including all key words, article title, author name, and session title. The CD-ROM has Autorun feature for Windows 2000 or higher products and can also be used with Macintosh computers. The CD includes the program for Adobe Acrobat Reader with Search 11.0. One year of technical support is included with your purchase of this product.
"Reinventing Discovery argues that we are in the early days of the most dramatic change in how science is done in more than 300 years. This change is being driven by new online tools, which are transforming and radically accelerating scientific discovery"--
Scientific discovery is often regarded as romantic and creative--and hence unanalyzable--whereas the everyday process of verifying discoveries is sober and more suited to analysis. Yet this fascinating exploration of how scientific work proceeds argues that however sudden the moment of discovery may seem, the discovery process can be described and modeled. Using the methods and concepts of contemporary information-processing psychology (or cognitive science) the authors develop a series of artificial-intelligence programs that can simulate the human thought processes used to discover scientific laws. The programs--BACON, DALTON, GLAUBER, and STAHL--are all largely data-driven, that is, when presented with series of chemical or physical measurements they search for uniformities and linking elements, generating and checking hypotheses and creating new concepts as they go along. Scientific Discovery examines the nature of scientific research and reviews the arguments for and against a normative theory of discovery; describes the evolution of the BACON programs, which discover quantitative empirical laws and invent new concepts; presents programs that discover laws in qualitative and quantitative data; and ties the results together, suggesting how a combined and extended program might find research problems, invent new instruments, and invent appropriate problem representations. Numerous prominent historical examples of discoveries from physics and chemistry are used as tests for the programs and anchor the discussion concretely in the history of science.
Cycles of Invention and Discovery offers an in-depth look at the real-world practice of science and engineering. It shows how the standard categories of “basic” and “applied” have become a hindrance to the organization of the U.S. science and technology enterprise. Tracing the history of these problematic categories, Venkatesh Narayanamurti and Toluwalogo Odumosu document how historical views of policy makers and scientists have led to the construction of science as a pure ideal on the one hand and of engineering as a practical (and inherently less prestigious) activity on the other. Even today, this erroneous but still widespread distinction forces these two endeavors into separate silos, misdirects billions of dollars, and thwarts progress in science and engineering research. The authors contrast this outmoded perspective with the lived experiences of researchers at major research laboratories. Using such Nobel Prize–winning examples as magnetic resonance imaging, the transistor, and the laser, they explore the daily micro-practices of research, showing how distinctions between the search for knowledge and creative problem solving break down when one pays attention to the ways in which pathbreaking research actually happens. By studying key contemporary research institutions, the authors highlight the importance of integrated research practices, contrasting these with models of research in the classic but still-influential report Science the Endless Frontier. Narayanamurti and Odumosu’s new model of the research ecosystem underscores that discovery and invention are often two sides of the same coin that moves innovation forward.
Discovery, Innovation, and Risk presents brief descriptions of selected scientific principles in the context of interesting technological examples to illustrate the complex interplay among science, engineering, and society.
A look at the new species of animals and plant that scientists discovered around the world, including a monkey the size of a finger, a whale nobody has ever seen, and many more.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.