Download Free New Aspects In Interpolation And Completion Theories Book in PDF and EPUB Free Download. You can read online New Aspects In Interpolation And Completion Theories and write the review.

This volume consists of eight papers containing recent advances in interpolation theory for matrix functions and completion theory for matrices and operators. In the first paper, D. Alpay and P. Loubaton, "The tangential trigonometric moment problem on an interval and related topics" a trigonometric moment problem on an interval for matrix valued functions is studied. The realization approach plays an important role in solving this problem. The second paper, M. Bakonyi, V.G. Kaftal, G. Weiss and H.J. Woerdeman, "Max imum entropy and joint norm bounds for operator extensions" is dedicated to a matrix completion problem. In it is considered the problem when only the lower triangular part of the operator entries of a matrix is identified. Completions which have simultaneously a small usual norm and a small Hilbert-Schmidt norm are considered. Bounds for these norms are obtained. The analysis of the maximum entropy extension plays a special role. The paper contains applications to nest algebras and integral operators. The third paper, J .A. Ball, I. Gohberg and M.A. Kaashoek, "Bitangential interpola tion for input-output operators of time varying systems: the discrete time case" contains solutions of time varying interpolation problems. The main attention is focused on the time varying analog of the Nevanlinna-Pick tangential problem in the case where the inter polation conditions appear from two sides. The state space theory of time varying systems play an important role.
About one half of the papers in this volume are based on lectures which were pre sented at a conference at Leipzig University in August 1994, which was dedicated to Vladimir Petrovich Potapov. He would have been eighty years old. These have been supplemented by: (1) Historical material, based on reminiscences of former colleagues, students and associates of V.P. Potapov. (2) Translations of a number of important papers (which serve to clarify the Potapov approach to problems of interpolation and extension, as well as a number of related problems and methods) and are relatively unknown in the West. (3) Two expository papers, which have been especially written for this volume. For purposes of discussion, it is convenient to group the technical papers in this volume into six categories. We will now run through them lightly, first listing the major theme, then in parentheses the authors of the relevant papers, followed by discussion. Some supplementary references are listed at the end; OT72 which appears frequently in this volume, refers to Volume 72 in the series Operator Theory: Advances and Applications. It was dedicated to V.P. Potapov. 1. Multiplicative decompositions (Yu.P. Ginzburg; M.S. Livsic, I.V. Mikhailova; V.I. Smirnov).
Vladimir Petrovich Potapov, as remembered by colleagues, friends and former students.- On a minimum problem in function theory and the number of roots of an algebraic equation inside the unit disc.- On tangential interpolation in reproducing kernel Hilbert modules and applications.- Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions.- The indefinite metric in the Schur interpolation problem for analytic functions, IV.- Bitangential interpolation for upper triangular operators.- Bitangential interpolation for upper triangular operators when the Pick operator is strictly positive.- Integral representations of a pair of nonnegative operators and interpolation problems in the Stieltjes class.- On recovering a multiplicative integral from its modulus.- On Schur functions and Szegö orthogonal polynomials.- Hilbert spaces of entire functions as a J theory subject.- On transformations of Potapov's fundamental matrix inequality.- An abstract interpolation problem and the extension theory of isometric operators.- On the theory of matrix-valued functions belonging to the Smirnov class.- Integral representation of function of class Ka.- On the theory of entire matrix-functions of exponential type.- Analogs of Nehari and Sarason theorems for character-automorphic functions and some related questions.- The Blaschke-Potapov factorization theorem and the theory of nonselfadjoint operators.- Weyl matrix circles as a tool for uniqueness in the theory of multiplicative representation of J-inner functions.- On a criterion of positive definiteness.- Matrix boundary value problems with eigenvalue dependent boundary conditions (The linear case).- Weyl-Titchmarsh functions of the canonical periodical system of differential equations.- On boundary values of functions regular in a disk.
This volume is devoted to Joseph A. (Joe) Ball’s contributions to operator theory and its applications and in celebration of his seventieth birthday. Joe Ball’s career spans over four and a half decades, starting with his work on model theory and related topics for non-contractions and operators on multiply connected domains. Later on, more applied operator theory themes appeared in his work, involving factorization and interpolation for operator-valued functions, with extensive applications in system and control theory. He has worked on nonlinear control, time-varying systems and, more recently, on multidimensional systems and noncommutative H∞-theory on the unit ball and polydisk, and more general domains, and these are only the main themes in his vast oeuvre. Fourteen research papers constitute the core of this volume, written by mathematicians who have collaborated with Joe or have been influenced by his vast mathematical work. A curriculum vitae, a publications list and a list of Joe Ball’s PhD students are included in this volume, as well as personal reminiscences by colleagues and friends. Contributions by Yu. M. Arlinskii, S. Hassi, M. Augat, J. W. Helton, I. Klep, S. McCullough, S. Balasubramanian, U. Wijesooriya, N. Cohen, Q. Fang, S. Gorai, J. Sarkar, G. J. Groenewald, S. ter Horst, J. Jaftha, A. C. M. Ran, M.A. Kaashoek, F. van Schagen, A. Kheifets, Z. A. Lykova, N. J. Young, A. E. Ajibo, R. T. W. Martin, A. Ramanantoanina, M.-J. Y. Ou, H. J. Woerdeman, A. van der Schaft, A. Tannenbaum, T. T. Georgiou, J. O. Deasy and L. Norton.
Much of the importance of mathematics lies in its ability to provide theories which are useful in widely different fields of endeavour. A good example is the large and amorphous body of knowledge known as the theory of linear operators or operator theory, which came to life about a century ago as a theory to encompass properties common to matrix, differential, and integral operators. Thus, it is a primary purpose of operator theory to provide a coherent body of knowledge which can explain phenomena common to the enormous variety of problems in which such linear operators play a part. The theory is a vital part of functional analysis, whose methods and techniques are one of the major advances of twentieth century mathematics and now play a pervasive role in the modeling of phenomena in probability, imaging, signal processing, systems theory, etc, as well as in the more traditional areas of theoretical physics and mechanics. This book is based on lectures presented at a meeting on operator theory and its applications held at the Fields Institute in 1994.
This volume is dedicated to the memory of Israel Glazman, an outstanding personality and distinguished mathematician, the author of many remarkable papers and books in operator theory and its applications. The present book opens with an essay devoted to Glazman's life and scientific achievements. It focusses on the areas of his unusually wide interests and consists of 18 mathematical papers in spectral theory of differential operators and linear operators in Hilbert and Banach spaces, analytic operator functions, ordinary and partial differential equations, functional equations, mathematical physics, nonlinear functional analysis, approximation theory and optimization, and mathematical statistics. The book gives a picture of the current state of some important problems in areas of operator theory and its applications and will be of interest to a wide group of researchers working in pure and applied mathematics.
On November 12-14, 1997 a workshop was held at the Vrije Universiteit Amsterdam on the occasion of the sixtieth birthday ofM. A. Kaashoek. The present volume contains the proceedings of this workshop. The workshop was attended by 44 participants from all over the world: partici pants came from Austria, Belgium, Canada, Germany, Ireland, Israel, Italy, The Netherlands, South Africa, Switzerland, Ukraine and the USA. The atmosphere at the workshop was very warm and friendly. There where 21 plenary lectures, and each lecture was followed by a lively discussion. The workshop was supported by: the Vakgroep Wiskunde of the Vrije Univer siteit, the department of Mathematics and Computer Science of the Vrije Univer siteit, the Stichting VU Computer Science & Mathematics Research Centre, the Thomas Stieltjes Institute for Mathematics, and the department of Economics of the Erasmus University Rotterdam. The organizers would like to take this opportunity to express their gratitude for the support. Without it the workshop would not have been so successful as it was. Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Photograph of M. A. Kaashoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Curriculum Vitae of M. A. Kaashoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv List of Publications of M. A. Kaashoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix l. Gohberg Opening Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxi H. Bart, A. C. M. Ran and H. I. Woerdeman Personal Reminiscences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxv V. Adamyan and R. Mennicken On the Separation of Certain Spectral Components of Selfadjoint Operator Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Conditions for the Separation of Spectral Components . . . . . . . 4 3. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This is the sixth published volume of the Israel Seminar on Geometric Aspects of Functional Analysis. The previous volumes are 1983-84 published privately by Tel Aviv University 1985-86 Springer Lecture Notes, Vol. 1267 1986-87 Springer Lecture Notes, Vol. 1317 1987-88 Springer Lecture Notes, Vol. 1376 1989-90 Springer Lecture Notes, Vol. 1469 As in the previous vC!lumes the central subject of -this volume is Banach space theory in its various aspects. In view of the spectacular development in infinite-dimensional Banach space theory in recent years (like the solution of the hyperplane problem, the unconditional basic sequence problem and the distortion problem in Hilbert space) it is quite natural that the present volume contains substantially more contributions in this direction than the previous volumes. This volume also contains many important contributions in the "traditional directions" of this seminar such as probabilistic methods in functional analysis, non-linear theory, harmonic analysis and especially the local theory of Banach spaces and its connection to classical convexity theory in IRn. The papers in this volume are original research papers and include an invited survey by Alexander Olevskii of Kolmogorov's work on Fourier analysis (which was presented at a special meeting on the occasion of the 90th birthday of A. N. Kol mogorov). We are very grateful to Mrs. M. Hercberg for her generous help in many directions, which made the publication of this volume possible. Joram Lindenstrauss, Vitali Milman 1992-1994 Operator Theory: Advances and Applications, Vol.
This book presents a unified approach for solving both stationary and nonstationary interpolation problems, in finite or infinite dimensions, based on the commutant lifting theorem from operator theory and the state space method from mathematical system theory. Initially the authors planned a number of papers treating nonstationary interpolation problems of Nevanlinna-Pick and Nehari type by reducing these nonstationary problems to stationary ones for operator-valued functions with operator arguments and using classical commutant lifting techniques. This reduction method required us to review and further develop the classical results for the stationary problems in this more general framework. Here the system theory turned out to be very useful for setting up the problems and for providing natural state space formulas for describing the solutions. In this way our work involved us in a much wider program than original planned. The final results of our efforts are presented here. The financial support in 1994 from the "NWO-stimulansprogramma" for the Thomas Stieltjes Institute for Mathematics in the Netherlands enabled us to start the research which lead to the present book. We also gratefully acknowledge the support from our home institutions: Indiana University at Bloomington, Purdue University at West Lafayette, Tel-Aviv University, and the Vrije Universiteit at Amsterdam. We warmly thank Dr. A.L. Sakhnovich for his carefully reading of a large part of the manuscript. Finally, Sharon Wise prepared very efficiently and with great care the troff file of this manuscript; we are grateful for her excellent typing.
Intensive research in matrix completions, moments, and sums of Hermitian squares has yielded a multitude of results in recent decades. This book provides a comprehensive account of this quickly developing area of mathematics and applications and gives complete proofs of many recently solved problems. With MATLAB codes and more than 200 exercises, the book is ideal for a special topics course for graduate or advanced undergraduate students in mathematics or engineering, and will also be a valuable resource for researchers. Often driven by questions from signal processing, control theory, and quantum information, the subject of this book has inspired mathematicians from many subdisciplines, including linear algebra, operator theory, measure theory, and complex function theory. In turn, the applications are being pursued by researchers in areas such as electrical engineering, computer science, and physics. The book is self-contained, has many examples, and for the most part requires only a basic background in undergraduate mathematics, primarily linear algebra and some complex analysis. The book also includes an extensive discussion of the literature, with close to 600 references from books and journals from a wide variety of disciplines.