Download Free New Approaches In Chordate And Vertebrate Evolution And Development Book in PDF and EPUB Free Download. You can read online New Approaches In Chordate And Vertebrate Evolution And Development and write the review.

Unlike anything currently available in the market, Dr. Sally A. Moody and a team of world-renowned experts provide a groundbreaking view of developmental genetics that will influence scientific approaches in embryology, comparative biology, as well as the newly emerging fields of stem cell biology and regenerative medicine. Principles of Developmental Genetics highlights the intersection of developmental biology with new revolutionary genomic technologies, and details how these advances have accelerated our understanding of the molecular genetic processes that regulates development. This definitive resource provides researchers with the opportunity to gain important insights into the clinical applicability of emerging new technologies and animal model data. This book is a must-have for all researchers in genetics, developmental biology, regenerative medicine, and stem cell biology.• Includes new research not previously published in any other book on the molecular geneticprocesses that regulates development• Chapters present a broad understanding on the application of animal model systems, allowingresearchers to better treat clinical disorders and comprehend human development• Relates the application of new technologies to the manipulation of stem cells, causes ofhuman birth defects, and several human disease conditions• Each chapter includes a bulleted summary highlighting clinical aspects of animal models
Chordate Origins and Evolution: The Molecular Evolutionary Road to Vertebrates focuses on echinoderms (starfish, sea urchins, and others), hemichordates (acorn worms, etc.), cephalochordates (lancelets), urochordates or tunicates (ascidians, larvaceans and others), and vertebrates. In general, evolution of these groups is discussed independently, on a larger scale: ambulacrarians (echi+hemi) and chordates (cephlo+uro+vert). Until now, discussion of these topics has been somewhat fragmented, and this work provides a unified presentation of the essential information. In the more than 150 years since Charles Darwin proposed the concept of the origin of species by means of natural selection, which has profoundly affected all fields of biology and medicine, the evolution of animals (metazoans) has been studied, discussed, and debated extensively. Following many decades of classical comparative morphology and embryology, the 1980s marked a turning point in studies of animal evolution, when molecular biological approaches, including molecular phylogeny (MP), molecular evolutionary developmental biology (evo-devo), and comparative genomics (CG), began to be employed. There are at least five key events in metazoan evolution, which include the origins of 1) diploblastic animals, such as cnidarians; 2) triploblastic animals or bilaterians; 3) protostomes and deuterostomes; 4) chordates, among deuterostomes; and 5) vertebrates, among chordates. The last two have received special attention in relation to evolution of human beings. During the past two decades, great advances have been made in this field, especially in regard to molecular and developmental mechanisms involved in the evolution of chordates. For example, the interpretation of phylogenetic relationships among deuterostomes has drastically changed. In addition, we have now obtained a large quantity of MP, evo-devo, and CG information on the origin and evolution of chordates. - Covers the most significant advances in this field to give readers an understanding of the interesting biological issues involved - Provides a unified presentation of essential information regarding each phylum and an integrative understanding of molecular mechanisms involved in the origin and evolution of chordates - Discusses the evolutionary scenario of chordates based on two major characteristic features of animals—namely modes of feeding (energy sources) and reproduction—as the two main forces driving animal evolution and benefiting dialogue for future studies of animal evolution
Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.
It is said that "necessity is the mother of invention". To be sure, wheels and pulleys were invented out of necessity by the tenacious minds of upright citi zens. Looking at the history of mankind, however, one has to add that "Ieisure is the mother of cultural improvement". Man's creative genius flourished only when his mind, freed from the worry of daily toils, was permitted to entertain apparently useless thoughts. In the same manner, one might say with regard to evolution that "natural selection mere(y tnodifted, while redundanry created". Natural selection has been extremely effective in policing alleHe mutations which arise in already existing gene loci. Because of natural selection, organisms have been able to adapt to changing environments, and by adaptive radiation many new species were created from a common ancestral form. Y et, being an effective policeman, natural selection is extremely conservative by nature. Had evolution been entirely dependent upon natural selection, from a bacterium only numerous forms of bacteria would have emerged. The creation of metazoans, vertebrates and finally mammals from unicellular organisms would have been quite impos sible, for such big leaps in evolution required the creation of new gene loci with previously nonexistent functions. Only the cistron which became redun dant was able to escape from the relentless pressure of natural selection, and by escaping, it accumulated formerly forbidden mutations to emerge as a new gene locus.
Most of the cranial sense organs of vertebrates arise from embryonic structures known as cranial placodes. Such placodes also give rise to sensory neurons that transmit information to the brain as well as to many neurosecretory cells. This book focuses on the development of sensory and neurosecretory cell types from cranial placodes by introducing the vertebrate head with its sense organs and neurosecretory organs and providing an overview of the various cranial placodes and their derivatives, including evidence of common embryonic primordia. Schlosser discusses how these primordia are established in the early embryo and how individual placodes develop. The latter chapters explain how various placodally derived sensory and neurosecretory cell types differentiate into discrete structures.
The importance of molecular approaches for comparative biology and the rapid development of new molecular tools is unprecedented. The extraordinary molecular progress belies the need for understanding the development and basic biology of whole organisms. Vigorous international efforts to train the next-generation of experimental biologists must combine both levels – next generation molecular approaches and traditional organismal biology. This book provides cutting-edge chapters regarding the growing list of marine model organisms. Access to and practical advice on these model organisms have become a conditio sine qua non for a modern education of advanced undergraduate students, graduate students and postdocs working on marine model systems. Model organisms are not only tools they are also bridges between fields – from behavior, development and physiology to functional genomics. Key Features Offers deep insights into cutting-edge model system science Provides in-depth overviews of all prominent marine model organisms Illustrates challenging experimental approaches to model system research Serves as a reference book also for next-generation functional genomics applications Fills an urgent need for students Related Titles Jarret, R. L. & K. McCluskey, eds. The Biological Resources of Model Organisms (ISBN 978-1-1382-9461-5) Kim, S.-K. Healthcare Using Marine Organisms (ISBN 978-1-1382-9538-4) Mudher, A. & T. Newman, eds. Drosophila: A Toolbox for the Study of Neurodegenerative Disease (ISBN 978-0-4154-1185-1) Green, S. L. The Laboratory Xenopus sp. (ISBN 978-1-4200-9109-0)
This book provides students and researchers with reviews of biological questions related to the evolution of feeding by vertebrates in aquatic and terrestrial environments. Based on recent technical developments and novel conceptual approaches, the book covers functional questions on trophic behavior in nearly all vertebrate groups including jawless fishes. The book describes mechanisms and theories for understanding the relationships between feeding structure and feeding behavior. Finally, the book demonstrates the importance of adopting an integrative approach to the trophic system in order to understand evolutionary mechanisms across the biodiversity of vertebrates.
Ascidians are the invertebrate group that gave rise to vertebrates, thus the biology of ascidians provides an essential key to understanding both invertebrates and vertebrates. This book is the first to cover all areas of ascidian biology, including development, evolution, biologically active substances, heavy metal accumulation, asexual reproduction, host-defense mechanisms, allorecognition mechanisms, comparative immunology, neuroscience, taxonomy, ecology, genome science, and food science. The 69 articles that make up the collection were contributed by leading ascidiologists from all over the world who participated in the First International Symposium on the Biology of Ascidians, held in June 2000 in Sapporo, Japan. For scientists and students alike, the book is an invaluable source of information from the latest, most comprehensive studies of ascidian biology.
Originally published in 1933, this book is a culmination of a lifetime of research by Hans Friedrich Gadow into the evolution of the vertebrae. Gadow outlines the various forms of vertebral development as a guide to larger and more general questions on the morphological scheme of the evolution of vertebrate creatures, and uses plentiful diagrams, photographs and reconstructions to trace spinal development. This book will be of value to anyone with an interest in the history of science.