Download Free Neutrosophic Soft Bitopological Spaces Book in PDF and EPUB Free Download. You can read online Neutrosophic Soft Bitopological Spaces and write the review.

In this study, bitopological structure which is a more general structure than topological spaces is built on neutrosophic sets. The necessary arguments which are pairwise neutrosophic open set, pairwise neutrosophic closed set, pairwise neutrosophic closure, pairwise neutrosophic interior are defined and their basic properties are presented. The relations of these concepts with their counterparts in neutrosophic topological spaces are given and many examples are presented.
In this work, some new classes of neutrosophic (1,2)-maps are investigated and discussed their basic attributions in neutrosophic bi-topological space (NBTS). In this paper, the relationships among these classes like neutrosophic (1,2)-continuous/ open/ strongly open/ generality open/ maps are discussed. Moreover, our work in this paper is examined and some examples are shown to support this research.
In this paper, the concept of neutrosophic soft continuous mapping, neutrosophic soft open mapping, neutrosophic soft closed mapping and neutrosophic soft homeomorphism have been introduced along with the investigation of their several characteristics, and verified by proper examples.
In this paper, the concept of connectedness and compactness on neutrosophic soft topological space have been introduced along with the investigation of their several characteristics. Some related theorems have been established also. Then, the notion of neutrosophic soft continuous mapping on a neutrosophic soft topological space and it’s properties are developed here.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
This research article lays the foundation to propose the new concept of neutrosophic soft cubic topology. Here we focus on the systematic study of neutrosophic soft cubic sets and deduce various properties which are induced by them. This enables us to introduce some equivalent characterizations and brings out the inter relations among them.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
The idea of neutrosophic set was floated by Smarandache by supposing a truth membership, an indeterminacy membership and a falsehood or falsity membership functions. Neutrosophic soft sets bonded by Maji have been utilized successfully to model uncertainty in several areas of application such as control, reasoning, pattern recognition and computer vision. The rst aim of this article bounces the idea of neutrosophic soft b-open set, neutrosophic soft b-closed sets and their properties.Also the idea of neutrosophic soft b-neighborhood and neutrosophic soft b-separation axioms in neutrosophic soft topological structures are also reflected here.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
For the first time we introduce non-standard neutrosophic topology on the extended non-standard analysis space, called non-standard real monad space, which is closed under neutrosophic non-standard infimum and supremum. Many classical topological concepts are extended to the non-standard neutrosophic topology, several theorems and properties about them are proven, and many examples are presented.