Download Free Neutrosophic Relational Data Model Book in PDF and EPUB Free Download. You can read online Neutrosophic Relational Data Model and write the review.

In this paper, we present a generalization of the relational data model based on interval neutrosophic set.
This book presents the advancements and applications of neutrosophics, which are generalizations of fuzzy logic, fuzzy set, and imprecise probability. The neutrosophic logic, neutrosophic set, neutrosophic probability, and neutrosophic statistics are increasingly used in engineering applications (especially for software and information fusion), medicine, military, cybernetics, physics.In the last chapter a soft semantic Web Services agent framework is proposed to facilitate the registration and discovery of high quality semantic Web Services agent. The intelligent inference engine module of soft semantic Web Services agent is implemented using interval neutrosophic logic.
This is an eclectic tome of 100 papers in various fields of sciences, alphabetically listed, such as: astronomy, biology, calculus, chemistry, computer programming codification, economics and business and politics, education and administration, game theory, geometry, graph theory,information fusion, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, psychology, quantum physics, scientific research methods, and statistics ¿ containing 800 pages.It was my preoccupation and collaboration as author, co-author, translator, or co-translator, and editor with many scientists from around the world for long time. Many ideas from this book are to be developed and expanded in future explorations.
In a world of chaotic alignments, traditional logic with its strict boundaries of truth and falsity has not imbued itself with the capability of reflecting the reality. Despite various attempts to reorient logic, there has remained an essential need for an alternative system that could infuse into itself a representation of the real world. Out of this need arose the system of Neutrosophy (the philosophy of neutralities, introduced by FLORENTIN SMARANDACHE), and its connected logic Neutrosophic Logic, which is a further generalization of the theory of Fuzzy Logic. In this book we study the concepts of Fuzzy Cognitive Maps (FCMs) and their Neutrosophic analogue, the Neutrosophic Cognitive Maps (NCMs). Fuzzy Cognitive Maps are fuzzy structures that strongly resemble neural networks, and they have powerful and far-reaching consequences as a mathematical tool for modeling complex systems. Neutrosophic Cognitive Maps are generalizations of FCMs, and their unique feature is the ability to handle indeterminacy in relations between two concepts thereby bringing greater sensitivity into the results. Some of the varied applications of FCMs and NCMs which has been explained by us, in this book, include: modeling of supervisory systems; design of hybrid models for complex systems; mobile robots and in intimate technology such as office plants; analysis of business performance assessment; formalism debate and legal rules; creating metabolic and regulatory network models; traffic and transportation problems; medical diagnostics; simulation of strategic planning process in intelligent systems; specific language impairment; web-mining inference application; child labor problem; industrial relations: between employer and employee, maximizing production and profit; decision support in intelligent intrusion detection system; hyper-knowledge representation in strategy formation; female infanticide; depression in terminally ill patients and finally, in the theory of community mobilization and women empowerment relative to the AIDS epidemic.
Symbolic (or Literal) Neutrosophic Theory is referring to the use of abstract symbols (i.e. the letters T, I, F, or their refined indexed letters Tj, Ik, Fl) in neutrosophics. In the first chapter we extend the dialectical triad thesis-antithesis-synthesis (dynamics of and , to get a synthesis) to the neutrosophic tetrad thesis-antithesis-neutrothesis-neutrosynthesis (dynamics of , , and , in order to get a neutrosynthesis). In the second chapter we introduce the neutrosophic system and neutrosophic dynamic system. A neutrosophic system is a quasi- or (t,i,f)–classical system, in the sense that the neutrosophic system deals with quasi-terms/concepts/attributes, etc. [or (t,i,f)-terms/concepts/attributes], which are approximations of the classical terms/concepts/attributes, i.e. they are partially true/membership/probable (t), partially indeterminate (i), and partially false/nonmembership/improbable (f), where t, i, f are subsets of the unitary interval [0, 1]. In the third chapter we introduce for the first time the notions of Neutrosophic Axiom, Neutrosophic Deducibility, Neutrosophic Axiomatic System, Degree of Contradiction (Dissimilarity) of Two Neutrosophic Axioms, etc. The fourth chapter we introduced for the first time a new type of structures, called (t, i, f)-Neutrosophic Structures, presented from a neutrosophic logic perspective, and we showed particular cases of such structures in geometry and in algebra. In any field of knowledge, each structure is composed from two parts: a space, and a set of axioms (or laws) acting (governing) on it. If the space, or at least one of its axioms (laws), has some indeterminacy of the form (t, i, f) ≠ (1, 0, 0), that structure is a (t, i, f)-Neutrosophic Structure. In the fifth chapter we make a short history of: the neutrosophic set, neutrosophic numerical components and neutrosophic literal components, neutrosophic numbers, etc. The aim of this chapter is to construct examples of splitting the literal indeterminacy (I) into literal sub-indeterminacies (I1,I2,…,Ir), and to define a multiplication law of these literal sub-indeterminacies in order to be able to build refined I-neutrosophic algebraic structures. In the sixth chapter we define for the first time three neutrosophic actions and their properties. We then introduce the prevalence order on (T, I, F) with respect to a given neutrosophic operator "o", which may be subjective - as defined by the neutrosophic experts. And the refinement of neutrosophic entities , , and . Then we extend the classical logical operators to neutrosophic literal (symbolic) logical operators and to refined literal (symbolic) logical operators, and we define the refinement neutrosophic literal (symbolic) space. In the seventh chapter we introduce for the first time the neutrosophic quadruple numbers (of the form a+bT+cI+dF) and the refined neutrosophic quadruple numbers. Then we define an absorbance law, based on a prevalence order, both of them in order to multiply the neutrosophic components T, I, F or their sub-components T_j, I_k, F_l and thus to construct the multiplication of neutrosophic quadruple numbers.
In information technology, the concepts of cost, time, delivery, space, quality, durability, and price have gained greater importance in solving managerial decision-making problems in supply chain models, transportation problems, and inventory control problems. Moreover, competition is becoming tougher in imprecise environments. Neutrosophic sets and logic are gaining significant attention in solving real-life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency, and indeterminacy. Neutrosophic Sets in Decision Analysis and Operations Research is a critical, scholarly publication that examines various aspects of organizational research through mathematical equations and algorithms and presents neutrosophic theories and their applications in various optimization fields. Featuring a wide range of topics such as information retrieval, decision making, and matrices, this book is ideal for engineers, technicians, designers, mathematicians, practitioners of mathematics in economy and technology, scientists, academicians, professionals, managers, researchers, and students.
In this book, we introduce for the first time the notions of neutrosophic measure and neutrosophic integral, and we develop the 1995 notion of neutrosophic probability. We present many practical examples. It is possible to define the neutrosophic measure and consequently the neutrosophic integral and neutrosophic probability in many ways, because there are various types of indeterminacies, depending on the problem we need to solve. Neutrosophics study the indeterminacy. Indeterminacy is different from randomness. It can be caused by physical space materials and type of construction, by items involved in the space, etc.
In this paper, we introduce for the first time the neutrosophic system and neutrosophic dynamic system that represent new per-spectives in science.
Neutrosophic Analysis is a generalization of Set Analysis, which in its turn is a generalization of Interval Analysis. Neutrosophic Precalculus is referred to indeterminate staticity, while Neutrosophic Calculus is the mathematics of indeterminate change. The Neutrosophic Precalculus and Neutrosophic Calculus can be developed in many ways, depending on the types of indeterminacy one has and on the methods used to deal with such indeterminacy. In this book, the author presents a few examples of indeterminacies and several methods to deal with these specific indeterminacies, but many other indeterminacies there exist in our everyday life, and they have to be studied and resolved using similar of different methods. Therefore, more research should to be done in the field of neutrosophics. The author introduces for the first time the notions of neutrosophic mereo-limit, neutrosophic mereo-continuity (in a different way from the classical semi-continuity), neutrosophic mereo-derivative and neutrosophic mereo-integral (both in different ways from the fractional calculus), besides the classical definitions of limit, continuity, derivative, and integral respectively. Future research may be done in the neutrosophic fractional calculus. It means that in neutrosophic calculus there are limits, continuity, derivatives, and integrals that are not complete, i.e. there are neutrosophic functions that at a given point may have a degree of a limit (not 100%) called mereo-limit, or may be continuous in a certain degree (not 100%) called mereo-continuity, or may be differentiable or integrable in a certain degree (not 100%) called mereo-derivatives and respectively mereo-integrals. These occur because of indeterminacies...