Download Free Neutrosophic Precalculus And Neutrosophic Calculus Second Enlarged Edition Book in PDF and EPUB Free Download. You can read online Neutrosophic Precalculus And Neutrosophic Calculus Second Enlarged Edition and write the review.

Neutrosophy means the study of ideas and notions that are not true, nor false, but in between (i.e. neutral, indeterminate, unclear, vague, ambiguous, incomplete, contradictory, etc.). Each field has a neutrosophic part, i.e. that part that has indeterminacy. Thus, there were born the neutrosophic logic, neutrosophic set, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus, etc. There exist many types of indeterminacies – that is why neutrosophy can be developed in many different ways.
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to economics, finance, management, industries, electronics, and communications are promoted.
The first part of this book is an introduction to the activities of the National Symposium, as well as a presentation of Neutrosophic Scientific International Association (NSIA), based in New Mexico, USA, also explaining the role and scope of NSIA - Iraqi branch. The NSIA Iraqi branch presents a suggestion for the international instructions in attempting to organize NSIA's work.
Neutrosophic Analysis is a generalization of Set Analysis, which in its turn is a generalization of Interval Analysis. Neutrosophic Precalculus is referred to indeterminate staticity, while Neutrosophic Calculus is the mathematics of indeterminate change. The Neutrosophic Precalculus and Neutrosophic Calculus can be developed in many ways, depending on the types of indeterminacy one has and on the methods used to deal with such indeterminacy. In this book, the author presents a few examples of indeterminacies and several methods to deal with these specific indeterminacies, but many other indeterminacies there exist in our everyday life, and they have to be studied and resolved using similar of different methods. Therefore, more research should to be done in the field of neutrosophics. The author introduces for the first time the notions of neutrosophic mereo-limit, neutrosophic mereo-continuity (in a different way from the classical semi-continuity), neutrosophic mereo-derivative and neutrosophic mereo-integral (both in different ways from the fractional calculus), besides the classical definitions of limit, continuity, derivative, and integral respectively. Future research may be done in the neutrosophic fractional calculus. It means that in neutrosophic calculus there are limits, continuity, derivatives, and integrals that are not complete, i.e. there are neutrosophic functions that at a given point may have a degree of a limit (not 100%) called mereo-limit, or may be continuous in a certain degree (not 100%) called mereo-continuity, or may be differentiable or integrable in a certain degree (not 100%) called mereo-derivatives and respectively mereo-integrals. These occur because of indeterminacies...
Neutrosophic (over, off, under) set and logic were defined for the first time in 1995 by Florentin Smarandache, and presented during 1995-2018 to various national and international conferences and seminars. The (over, off, under) neutrosophic geometric programming was put forward by Huda et al. in (2016) [8], in an attempt to define a new type of geometric programming using (over, off, under) neutrosophic less than or equal to.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. Papers concern with neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributions to economics, finance, management, industries, electronics, and communications are promoted.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Parameter Reduction of Neutrosophic Soft Sets and Their Applications, Geometric Programming (NGP) Problems Subject to (⋁,.) Operator; the Minimum Solution, Ngpr Homeomorphism in Neutrosophic Topological Spaces, Generalized Neutrosophic Separation Axioms in Neutrosophic Soft Topological Spaces.
This paper comes as a second step serves the purpose of constructing a neutrosophic optimization model for the relation geometric programming problems subject to (max, product) operator in its constraints.