Download Free Neutrosophic Multigroups And Applications Book in PDF and EPUB Free Download. You can read online Neutrosophic Multigroups And Applications and write the review.

In recent years, fuzzy multisets and neutrosophic sets have become a subject of great interest for researchers and have been widely applied to algebraic structures include groups, rings, fields and lattices. Neutrosophic multiset is a generalization of multisets and neutrosophic sets. In this paper, we proposed a algebraic structure on neutrosophic multisets is called neutrosophic multigroups which allow the truth-membership, indeterminacy-membership and falsity-membership sequence have a set of real values between zero and one.
Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been an important tool in the application of various areas such as data mining, decision making, e-learning, engineering, medicine, social science, and some more.
A collection of papers from multiple authors. In 2019 and 2020 Smarandache [1, 2, 3, 4] generalized the classical Algebraic Structures to NeutroAlgebraic Structures (or NeutroAlgebras) {whose operations and axioms are partially true, partially indeterminate, and partially false} as extensions of Partial Algebra, and to AntiAlgebraic Structures (or AntiAlgebras) {whose operations and axioms are totally false}. The NeutroAlgebras & AntiAlgebras are a new field of research, which is inspired from our real world. In classical algebraic structures, all axioms are 100%, and all operations are 100% well-defined, but in real life, in many cases these restrictions are too harsh, since in our world we have things that only partially verify some laws or some operations. Using the process of NeutroSophication of a classical algebraic structure we produce a NeutroAlgebra, while the process of AntiSophication of a classical algebraic structure produces an AntiAlgebra.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
In general, a system S (that may be a company, association, institution, society, country, etc.) is formed by sub-systems Si { or P(S), the powerset of S }, and each sub-system Si is formed by sub-sub-systems Sij { or P(P(S)) = P2(S) } and so on. That’s why the n-th PowerSet of a Set S { defined recursively and denoted by Pn(S) = P(Pn-1(S) } was introduced, to better describes the organization of people, beings, objects etc. in our real world. The n-th PowerSet was used in defining the SuperHyperOperation, SuperHyperAxiom, and their corresponding Neutrosophic SuperHyperOperation, Neutrosophic SuperHyperAxiom in order to build the SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra. In general, in any field of knowledge, one in fact encounters SuperHyperStructures. Also, six new types of topologies have been introduced in the last years (2019-2022), such as: Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, NeutroTopology, AntiTopology, SuperHyperTopology, and Neutrosophic SuperHyperTopology.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
NeutroAlgebra and AntiAlgebra were extended to NeutroGeometry and AntiGeometry in order to catch the Non-Euclidean Geometries. In the real world, the spaces and the elements that populate them and the rules that apply to them are not perfect, uniform, homogeneous, or complete. They are fragmentary and disparate, with unclear and conflicting information, and they do not apply in the same degree to each element. Therefore, these partial, hybrid, and mixed structures are necessary. NeutroGeometry, NeutroAlgebra, and SuperHyperAlgebra in Today's World presents applications of many NeutroStructures in our real world and considers NeutroGeometry and AntiGeometry as new fields of research that resemble everyday life. Covering key topics such as hyperbolic geometry, elliptic geometry, and AntiGeometry, this reference work is ideal for mathematicians, industry professionals, researchers, scholars, academicians, practitioners, instructors, and students.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This volume presents state-of-the-art papers on new topics related to neutrosophic theories, such as neutrosophic algebraic structures, neutrosophic triplet algebraic structures, neutrosophic extended triplet algebraic structures, neutrosophic algebraic hyperstructures, neutrosophic triplet algebraic hyperstructures, neutrosophic n-ary algebraic structures, neutrosophic n-ary algebraic hyperstructures, refined neutrosophic algebraic structures, refined neutrosophic algebraic hyperstructures, quadruple neutrosophic algebraic structures, refined quadruple neutrosophic algebraic structures, neutrosophic image processing, neutrosophic image classification, neutrosophic computer vision, neutrosophic machine learning, neutrosophic artificial intelligence, neutrosophic data analytics, neutrosophic deep learning, and neutrosophic symmetry, as well as their applications in the real world.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.