Download Free Neutrosophic Interval Bialgebraic Structures Book in PDF and EPUB Free Download. You can read online Neutrosophic Interval Bialgebraic Structures and write the review.

This book presents the advancements and applications of neutrosophics, which are generalizations of fuzzy logic, fuzzy set, and imprecise probability. The neutrosophic logic, neutrosophic set, neutrosophic probability, and neutrosophic statistics are increasingly used in engineering applications (especially for software and information fusion), medicine, military, cybernetics, physics.In the last chapter a soft semantic Web Services agent framework is proposed to facilitate the registration and discovery of high quality semantic Web Services agent. The intelligent inference engine module of soft semantic Web Services agent is implemented using interval neutrosophic logic.
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.
In this paper, we prove that Neutrosophic Statistics is more general than Interval Statistics, since it may deal with all types of indeterminacies (with respect to the data, inferential procedures, probability distributions, graphical representations, etc.), it allows the reduction of indeterminacy, and it uses the neutrosophic probability that is more general than imprecise and classical probabilities and has more detailed corresponding probability density functions. While Interval Statistics only deals with indeterminacy that can be represented by intervals. And we respond to the arguments by Woodall et al. [1]. We show that not all indeterminacies (uncertainties) may be represented by intervals. Also, in some cases, we should better use hesitant sets (that have less indeterminacy) instead of intervals. We redirect the authors to the Plithogenic Probability and Plithogenic Statistics which are the most general forms of MultiVariate Probability and Multivariate Statistics respectively (including, of course, the Imprecise Probability and Interval Statistics as subclasses).
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This volume is a collection of ten papers by contributors F. Smarandache, F. Yuhua, K. Mondal, S. Pramanik, S. Broumi, J. Ye, A. A. Salama,, N. Easa, S. A. Elhafez, M. M. Lotfy, L. Kong, Y. Wu, P. Biswas, B. C. Giri, A. Mukkerjee, and S. Sarkar, focusing on a new kind of algebraic structures called (T, I, F)- Neutrosophic Structures; Expanding Uncertainty Principle to Certainty-Uncertainty Principles with Neutrosophy and Quad-stage Methods; Rough Neutrosophic Multi-Attribute Decision-Making Based on Rough Accuracy Score Function; an Extended TOPSIS Method for Multiple Attribute Decision Making based on Interval Neutrosophic Uncertain Linguistic Variable; Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System; Fault Diagnosis Method of Gasoline Engines Using the Cosine Similarity Measure of Neutrosophic Numbers; Cosine Similarity Measure Based Multi-attribute Decision-making with Trapezoidal Fuzzy Neutrosophic Numbers; Thesis-Antithesis-Neutrothesis, and Neutrosynthesis; Negating Four Color Theorem with Neutrosophy and Quadstage Method; and A new method of measuring similarity between two neutrosophic soft sets and its application in pattern recognition problems.
The objective of this paper is to introduce the concept of neutrosophic nearrings. The concept of neutrosophic N-group of a neutrosophic nearring is introduced. We study neutrosophic subnearrings of neutrosophic nearrings and also neutrosophic N-subgroups of neutrosophic N- groups.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
In this book the new notion of interval semirings are introduced. New structures like interval groups are used to construct interval group semirings. Further non-associative interval semirings are constructed using loops and groupoids. We have given 284 examples, 118 problems are proposed ¿ some of them at the research level.The main keywords are interval semirings, interval groups, interval matrix semirings, interval groupoid semirings, neutrosophic interval semirings, and loop interval semirings.