Download Free Neutrosophic Entropy Measures For The Normal Distribution Theory And Applications Book in PDF and EPUB Free Download. You can read online Neutrosophic Entropy Measures For The Normal Distribution Theory And Applications and write the review.

Entropy is a measure of uncertainty and often used in information theory to determine the precise testimonials about unclear situations. Different entropy measures available in the literature are based on the exact form of the observations and lacks in dealing with the interval-valued data. The interval-valued data often arises from the situations having ambiguity, imprecise, unclear, indefinite, or vague states of the experiment and is called neutrosophic data. In this research modified forms of different entropy measures for normal probability distribution have been proposed by considering the neutrosophic form data. The performance of the proposed neutrosophic entropies for normal distribution has been assessed via a simulation study. Moreover, the proposed measures are also applied to two real data sets for their wide applicability.
Uncertainty, vagueness, and ambiguity surround us in many real-life problems and, therefore, always remain under consideration for researchers to quantify them. This study proposed neutrosophic discrete probability distribution as a generalization of classical or existing probability distributions, named neutrosophic geometric distribution. Case studies presented in the paper will help understand the concept and application of the proposed distribution. Several properties are derived, like the proposed distribution’s moment, characteristic, and probability-generating functions. Furthermore, the newly proposed distribution derives properties from the reliability analysis, such as survival function, hazard rate function, reversed hazard rate function, cumulative hazard rate function, mills ratio, and odds ratio. In addition, order statistics for NGD, including wth, the largest, and the smallest order statistics, are also derived from joint, median, minimum, and maximum order statistics. This examination opens the path for managing issues that follow traditional conveyances and simultaneously contain information that is not determined precisely.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
This book addresses new concepts, methods, algorithms, modeling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, linear problems and new information related to optimization for the topic from the theoretical and applied viewpoints of neutrosophic sets and logic. The book is an innovatory of new tools and procedures, such as: Neutrosophic Statistical Tests and Dependent State Samplings, Neutrosophic Probabilistic Expert Systems, Neutrosophic HyperSoft Set, Quadripartitioned Neutrosophic Cross-Entropy, Octagonal and Spherical and Cubic Neutrosophic Numbers used in machine learning. It highlights the process of neutrosofication {which means to split the universe into three parts, two opposite ones (Truth and Falsehood), and an Indeterminate or neutral one (I) in between them}. It explains Three-Ways Decision, how the universe set is split into three different distinct areas, in regard to the decision process, representing: Acceptance, Noncommitment, and Rejection, respectively. The Three-Way Decision is used in the Neutrosophic Linguistic Rough Set, which has never been done before.
Neutrosophic Set in Medical Image Analysis gives an understanding of the concepts of NS, along with knowledge on how to gather, interpret, analyze and handle medical images using NS methods. It presents the latest cutting-edge research that gives insight into neutrosophic set's novel techniques, strategies and challenges, showing how it can be used in biomedical diagnoses systems. The neutrosophic set (NS), which is a generalization of fuzzy set, offers the prospect of overcoming the restrictions of fuzzy-based approaches to medical image analysis. - Introduces the mathematical model and concepts of neutrosophic theory and methods - Highlights the different techniques of neutrosophic theory, focusing on applying the neutrosophic set in image analysis to support computer- aided diagnosis (CAD) systems, including approaches from soft computing and machine learning - Shows how NS techniques can be applied to medical image denoising, segmentation and classification - Provides challenges and future directions in neutrosophic set based medical image analysis
In this paper one generalizes the intuitionistic fuzzy set (IFS), paraconsistent set, and intuitionistic set to the neutrosophic set (NS). Many examples are presented. Distinctions between NS and IFS are underlined.
As a variation of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete and inconsistent information that exists in the real world. Simplified neutrosophic sets (SNSs) have been proposed for the main purpose of addressing issues with a set of specific numbers. However, there are certain problems regarding the existing operations of SNSs, as well as their aggregation operators and the comparison methods. Therefore, this paper defines the novel operations of simplified neutrosophic numbers (SNNs) and develops a comparison method based on the related research of intuitionistic fuzzy numbers. On the basis of these operations and the comparison method, some SNN aggregation operators are proposed. Additionally, an approach for multi-criteria group decision-making (MCGDM) problems is explored by applying these aggregation operators. Finally, an example to illustrate the applicability of the proposed method is provided and a comparison with some other methods is made.
N-Norm and N-conorm are extended in Neutrosophic Logic/Set.
This book presents the advancements and applications of neutrosophics, which are generalizations of fuzzy logic, fuzzy set, and imprecise probability. The neutrosophic logic, neutrosophic set, neutrosophic probability, and neutrosophic statistics are increasingly used in engineering applications (especially for software and information fusion), medicine, military, cybernetics, physics.In the last chapter a soft semantic Web Services agent framework is proposed to facilitate the registration and discovery of high quality semantic Web Services agent. The intelligent inference engine module of soft semantic Web Services agent is implemented using interval neutrosophic logic.