Download Free Neutrosophic Clustering Algorithm Based On Sparse Regular Term Constraint Book in PDF and EPUB Free Download. You can read online Neutrosophic Clustering Algorithm Based On Sparse Regular Term Constraint and write the review.

Clustering algorithm is one of the important research topics in the field of machine learning. Neutrosophic clustering is the generalization of fuzzy clustering and has been applied to many fields. this paper presents a new neutrosophic clustering algorithm with the help of regularization. Firstly, the regularization term is introduced into the FC-PFS algorithm to generate sparsity, which can reduce the complexity of the algorithm on large data sets. Secondly, we propose a method to simplify the process of determining regularization parameters. Finally, experiments show that the clustering results of this algorithm on artificial data sets and real data sets are mostly better than other clustering algorithms. Our clustering algorithm is effective in most cases.
Image Segmentation Summarizes and improves new theory, methods, and applications of current image segmentation approaches, written by leaders in the field The process of image segmentation divides an image into different regions based on the characteristics of pixels, resulting in a simplified image that can be more efficiently analyzed. Image segmentation has wide applications in numerous fields ranging from industry detection and bio-medicine to intelligent transportation and architecture. Image Segmentation: Principles, Techniques, and Applications is an up-to-date collection of recent techniques and methods devoted to the field of computer vision. Covering fundamental concepts, new theories and approaches, and a variety of practical applications including medical imaging, remote sensing, fuzzy clustering, and watershed transform. In-depth chapters present innovative methods developed by the authors—such as convolutional neural networks, graph convolutional networks, deformable convolution, and model compression—to assist graduate students and researchers apply and improve image segmentation in their work. Describes basic principles of image segmentation and related mathematical methods such as clustering, neural networks, and mathematical morphology. Introduces new methods for achieving rapid and accurate image segmentation based on classic image processing and machine learning theory. Presents techniques for improved convolutional neural networks for scene segmentation, object recognition, and change detection, etc. Highlights the effect of image segmentation in various application scenarios such as traffic image analysis, medical image analysis, remote sensing applications, and material analysis, etc. Image Segmentation: Principles, Techniques, and Applications is an essential resource for undergraduate and graduate courses such as image and video processing, computer vision, and digital signal processing, as well as researchers working in computer vision and image analysis looking to improve their techniques and methods.
A comprehensive, coherent, and in depth presentation of the state of the art in fuzzy clustering. Fuzzy clustering is now a mature and vibrant area of research with highly innovative advanced applications. Encapsulating this through presenting a careful selection of research contributions, this book addresses timely and relevant concepts and methods, whilst identifying major challenges and recent developments in the area. Split into five clear sections, Fundamentals, Visualization, Algorithms and Computational Aspects, Real-Time and Dynamic Clustering, and Applications and Case Studies, the book covers a wealth of novel, original and fully updated material, and in particular offers: a focus on the algorithmic and computational augmentations of fuzzy clustering and its effectiveness in handling high dimensional problems, distributed problem solving and uncertainty management. presentations of the important and relevant phases of cluster design, including the role of information granules, fuzzy sets in the realization of human-centricity facet of data analysis, as well as system modelling demonstrations of how the results facilitate further detailed development of models, and enhance interpretation aspects a carefully organized illustrative series of applications and case studies in which fuzzy clustering plays a pivotal role This book will be of key interest to engineers associated with fuzzy control, bioinformatics, data mining, image processing, and pattern recognition, while computer engineers, students and researchers, in most engineering disciplines, will find this an invaluable resource and research tool.
Neutrosophy (neutrosophic logic) is used to represent uncertain, indeterminate, and inconsistent information available in the real world. This article proposes a method to provide more sensitivity and precision to indeterminacy, by classifying the indeterminate concept/value into two based on membership: one as indeterminacy leaning towards truth membership and the other as indeterminacy leaning towards false membership.
Malignant melanoma is among the fastest increasing malignancies in many countries. Due to its propensity to metastasize and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. In non-Caucasian populations, melanomas are frequently located in acral volar areas and their dermoscopic appearance differs from the non-acral ones. Although lesion segmentation is a natural preliminary step towards its further analysis, so far virtually no acral skin lesion segmentation method has been proposed. Our goal was to develop an effective segmentation algorithm dedicated for acral lesions.
In 2019 & 2020 Smarandache generalized the classical Algebraic Structures to NeutroAlgebraic Structures (or NeutroAlgebras) {whose operations and axioms are partially true, partially indeterminate, and partially false} as extensions of Partial Algebra, and to AntiAlgebraic Structures (or AntiAlgebras) {whose operations and axioms are totally false}. And, in general, he extended any classical Structure, in no matter what field of knowledge, to a NeutroStructure and an AntiStructure.
In a world of chaotic alignments, traditional logic with its strict boundaries of truth and falsity has not imbued itself with the capability of reflecting the reality. Despite various attempts to reorient logic, there has remained an essential need for an alternative system that could infuse into itself a representation of the real world. Out of this need arose the system of Neutrosophy (the philosophy of neutralities, introduced by FLORENTIN SMARANDACHE), and its connected logic Neutrosophic Logic, which is a further generalization of the theory of Fuzzy Logic. In this book we study the concepts of Fuzzy Cognitive Maps (FCMs) and their Neutrosophic analogue, the Neutrosophic Cognitive Maps (NCMs). Fuzzy Cognitive Maps are fuzzy structures that strongly resemble neural networks, and they have powerful and far-reaching consequences as a mathematical tool for modeling complex systems. Neutrosophic Cognitive Maps are generalizations of FCMs, and their unique feature is the ability to handle indeterminacy in relations between two concepts thereby bringing greater sensitivity into the results. Some of the varied applications of FCMs and NCMs which has been explained by us, in this book, include: modeling of supervisory systems; design of hybrid models for complex systems; mobile robots and in intimate technology such as office plants; analysis of business performance assessment; formalism debate and legal rules; creating metabolic and regulatory network models; traffic and transportation problems; medical diagnostics; simulation of strategic planning process in intelligent systems; specific language impairment; web-mining inference application; child labor problem; industrial relations: between employer and employee, maximizing production and profit; decision support in intelligent intrusion detection system; hyper-knowledge representation in strategy formation; female infanticide; depression in terminally ill patients and finally, in the theory of community mobilization and women empowerment relative to the AIDS epidemic.
N-Norm and N-conorm are extended in Neutrosophic Logic/Set.
This book consists of selected papers written by the founder of fuzzy set theory, Lotfi A Zadeh. Since Zadeh is not only the founder of this field, but has also been the principal contributor to its development over the last 30 years, the papers contain virtually all the major ideas in fuzzy set theory, fuzzy logic, and fuzzy systems in their historical context. Many of the ideas presented in the papers are still open to further development. The book is thus an important resource for anyone interested in the areas of fuzzy set theory, fuzzy logic, and fuzzy systems, as well as their applications. Moreover, the book is also intended to play a useful role in higher education, as a rich source of supplementary reading in relevant courses and seminars.The book contains a bibliography of all papers published by Zadeh in the period 1949-1995. It also contains an introduction that traces the development of Zadeh's ideas pertaining to fuzzy sets, fuzzy logic, and fuzzy systems via his papers. The ideas range from his 1965 seminal idea of the concept of a fuzzy set to ideas reflecting his current interest in computing with words — a computing in which linguistic expressions are used in place of numbers.Places in the papers, where each idea is presented can easily be found by the reader via the Subject Index.