Download Free Neutron Stars Pulsars And Supernova Remnants Book in PDF and EPUB Free Download. You can read online Neutron Stars Pulsars And Supernova Remnants and write the review.

Written by a leading expert, this monograph presents recent developments on supernova remnants, with the inclusion of results from various satellites and ground-based instruments. The book details the physics and evolution of supernova remnants, as well as provides an up-to-date account of recent multiwavelength results. Supernova remnants provide vital clues about the actual supernova explosions from X-ray spectroscopy of the supernova material, or from the imprints the progenitors had on the ambient medium supernova remnants are interacting with - all of which the author discusses in great detail. The way in which supernova remnants are classified, is reviewed and explained early on. A chapter is devoted to the related topic of pulsar wind nebulae, and neutron stars associated with supernova remnants. The book also includes an extended part on radiative processes, collisionless shock physics and cosmic-ray acceleration, making this book applicable to a wide variety of astronomical sub-disciplines. With its coverage of fundamental physics and careful review of the state of the field, the book serves as both textbook for advanced students and as reference for researchers in the field.
The ideal text for a one-semester course in radio astronomy Essential Radio Astronomy is the only textbook on the subject specifically designed for a one-semester introductory course for advanced undergraduates or graduate students in astronomy and astrophysics. It starts from first principles in order to fill gaps in students' backgrounds, make teaching easier for professors who are not expert radio astronomers, and provide a useful reference to the essential equations used by practitioners. This unique textbook reflects the fact that students of multiwavelength astronomy typically can afford to spend only one semester studying the observational techniques particular to each wavelength band. Essential Radio Astronomy presents only the most crucial concepts—succinctly and accessibly. It covers the general principles behind radio telescopes, receivers, and digital backends without getting bogged down in engineering details. Emphasizing the physical processes in radio sources, the book's approach is shaped by the view that radio astrophysics owes more to thermodynamics than electromagnetism. Proven in the classroom and generously illustrated throughout, Essential Radio Astronomy is an invaluable resource for students and researchers alike. The only textbook specifically designed for a one-semester course in radio astronomy Starts from first principles Makes teaching easier for astronomy professors who are not expert radio astronomers Emphasizes the physical processes in radio sources Covers the principles behind radio telescopes and receivers Provides the essential equations and fundamental constants used by practitioners Supplementary website includes lecture notes, problem sets, exams, and links to interactive demonstrations An online illustration package is available to professors
Annotation Slane and Gaensler (both of the Harvard-Smithsonian Center for Astrophysics) present the proceedings of an August 2001 workshop devoted to young neutron stars and their associated supernova remnants, organized in light of observational advances since a similarly themed conference in 1998. Ninety-seven papers are organized into seven sections covering rotation-powered pulsars in supernova remnants, pulsar wind theory, evolution of pulsar nebulae, observations of pulsar nebulae, exotic neutron stars and their supernova remnants, isolated and binary neutron stars, and supernovae and supernova remnants. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com)
This book is a collation of the contributions presented at a major conference on isolated neutron stars held in London in April 2006. Forty years after the discovery of radio pulsars it presents an up-to-date description of the new vision of isolated neutron stars that has emerged in recent years. The great variety of isolated neutron stars, from pulsars to magnetars, is well covered by descriptions of recent observational results and presentations of the latest theoretical interpretation of these data.
Now in its fourth edition, Pulsar Astronomy provides a thoroughly revised and updated introduction to the field of pulsar astronomy.
Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only reviews the progress made since the early days of pulsar astronomy, but especially focuses on questions such as: "What have we learned about the subject and how did we learn it?", "What are the most important open questions in this area?" and "What new tools, telescopes, observations, and calculations are needed to answer these questions?". All authors who have contributed to this book have devoted a significant part of their scientific careers to exploring the nature of neutron stars and understanding pulsars. Everyone has paid special attention to writing educational comprehensive review articles with the needs of beginners, students and young scientists as potential readers in mind. This book will be a valuable source of information for these groups.
Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the >1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby, isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population---distances, ages, and magnetic fields---the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 1e6 year-old cooling neutron stars with magnetic fields above 1e13 Gauss. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication of central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.
All theoretical and observational topics relevant to the understanding of the thermonuclear (Type Ia) supernova phenomenon are thoroughly and consistently reviewed by a panel including the foremost experts in the field. The book covers all aspects, ranging from the observations of SNe Ia at all stages and all wavelengths to the 2D and 3D modelling of thermonuclear flames in very dense plasmas. Scenarios for close binary evolution leading to SNe Ia are discussed. Particular emphasis is placed on the homogeneity vs. diversity of SNe Ia and on their use as standard candles to measure cosmological parameters. The book reflects the recent and very significant progress made in both the modelling of the explosions and in the observational field.
This book is a comprehensive treatment of star formation, one of the most active fields of modern astronomy. The reader is guided through the subject in a logically compelling manner. Starting from a general description of stars and interstellar clouds, the authors delineate the earliest phases of stellar evolution. They discuss formation activity not only in the Milky Way, but also in other galaxies, both now and in the remote past. Theory and observation are thoroughly integrated, with the aid of numerous figures and images. In summary, this volume is an invaluable resource, both as a text for physics and astronomy graduate students, and as a reference for professional scientists.
Capturing the excitement and accomplishments of X-ray astronomy, this second edition now includes a broader range of astronomical phenomena and dramatic new results from the most powerful X-ray telescopes. Covering all areas of astronomical research, ranging from the smallest to the largest objects, from neutron stars to clusters of galaxies, this textbook is ideal for undergraduate students. Each chapter starts with the basic aspects of the topic, explores the history of discoveries, and examines in detail modern observations and their significance. This new edition has been updated with results from the most recent space-based instruments, including ROSAT, BeppoSAX, ASCA, Chandra, and XMM. New chapters cover X-ray emission processes, the interstellar medium, the Solar System, and gamma-ray bursts. The text is supported by over 300 figures, with tables listing the properties of the sources, and more specialized technical points separated in boxes.