Download Free Neutron Star Powered Nebulae Book in PDF and EPUB Free Download. You can read online Neutron Star Powered Nebulae and write the review.

Pulsars are rapidly-rotating neutron stars born out of the death of stars. A diffuse nebula is formed when particles stream from these neutron stars and interact with the ambient medium. These pulsar wind nebulae (PWNe) are visible across the electromagnetic spectrum, producing some of the most brilliant objects ever observed. The launch of the Fermi Gamma-ray Space Telescope in 2008 has offered us an unprecedented view of the cosmic gamma-ray sky. Using data from the Large Area Telescope on board Fermi, we search for new gamma-ray-emitting PWN. With these new observations, we vastly expand the number of PWN observed at these energies. We interpret the observed gamma-ray emission from these PWN in terms of a model where accelerated electrons produce gamma-rays through inverse Compton upscattering when they interact with interstellar photon fields. We conclude by studying how the observed PWN evolve with the age and spin-down power of the host pulsar.
The ideal text for a one-semester course in radio astronomy Essential Radio Astronomy is the only textbook on the subject specifically designed for a one-semester introductory course for advanced undergraduates or graduate students in astronomy and astrophysics. It starts from first principles in order to fill gaps in students' backgrounds, make teaching easier for professors who are not expert radio astronomers, and provide a useful reference to the essential equations used by practitioners. This unique textbook reflects the fact that students of multiwavelength astronomy typically can afford to spend only one semester studying the observational techniques particular to each wavelength band. Essential Radio Astronomy presents only the most crucial concepts—succinctly and accessibly. It covers the general principles behind radio telescopes, receivers, and digital backends without getting bogged down in engineering details. Emphasizing the physical processes in radio sources, the book's approach is shaped by the view that radio astrophysics owes more to thermodynamics than electromagnetism. Proven in the classroom and generously illustrated throughout, Essential Radio Astronomy is an invaluable resource for students and researchers alike. The only textbook specifically designed for a one-semester course in radio astronomy Starts from first principles Makes teaching easier for astronomy professors who are not expert radio astronomers Emphasizes the physical processes in radio sources Covers the principles behind radio telescopes and receivers Provides the essential equations and fundamental constants used by practitioners Supplementary website includes lecture notes, problem sets, exams, and links to interactive demonstrations An online illustration package is available to professors
Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only reviews the progress made since the early days of pulsar astronomy, but especially focuses on questions such as: "What have we learned about the subject and how did we learn it?", "What are the most important open questions in this area?" and "What new tools, telescopes, observations, and calculations are needed to answer these questions?". All authors who have contributed to this book have devoted a significant part of their scientific careers to exploring the nature of neutron stars and understanding pulsars. Everyone has paid special attention to writing educational comprehensive review articles with the needs of beginners, students and young scientists as potential readers in mind. This book will be a valuable source of information for these groups.
Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the >1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby, isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population---distances, ages, and magnetic fields---the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 1e6 year-old cooling neutron stars with magnetic fields above 1e13 Gauss. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication of central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.
This volume is the documentation of the second Course on 'Neutron Stars, Active Galactic Nuclei and Jets', held at Erice in September 1988. This second Course was devoted to our knowledge about neutron-star sources. The poster spoke of: pulsars, accreting X-ray sources and jet englnes, perhaps also UHE pulsars, X ra~' bursters and black-hole candidat.es. Neutron stars have even been proposed as the primary cosmic-ray boosters. Most of theil' properties are stil1 controversial, such as their birth mechanism (neutrino versus magnetic piston), internal structure (neutrons, quarks, strange particles), magnetic, thermal and spin histories, wind generation (hydrogen versus pair plasma, radiation versus centrifugal pressure), magnetospheric structure and accretion modes (along field lines versus quasi-Keplerian). The listed controversies have largely survived through the Course and entered into the proceedings. Several lecturers speak of 'magnetic-field decay' in neutron stars, of the 'recycling' of old pulsars, and of 'accretion-induced collapse' of white dwarfs as though such processes were textbook knowledge. Terms and abbreviations like RPSR (=recycled pulsar), spinup line, AIC, and ADC (=accretion disk corona) help to foster the assumptions. It is not clear to me at this time whether any of these notions has an application to reality.
This NATO AS! was the third in the series of Advanced Study Institutes on neutron stars, which started with 'Timing Neutron Stars', held in Qe§me near izmir, Turkey (April 1988), followed by 'Neutron Stars, an Interdis ciplinary Subject', held in Agia Pelagia on the island of Crete (September 1990). The first school centered on our main observational access to neu tron stars, i. e. the timing of radio pulsars and accretion powered neutron stars, and on what timing of neutron stars teaches us of their structure and environment. The second school had as its theme the interplay between diverse areas of physics which find interesting, even exotic applications in the extreme conditions of neutron stars and their magnetospheres. As the field has developed, with the number of observed neutron stars rapidly in creasing, and our knowledge of many individual neutron stars getting deeper and more detailed, an evolutionary picture of neutron stars has started to emerge. This led us to choose 'The Lives of the Neutron Stars' as the uni fying theme of this third Advanced Study Institute on neutron stars. Different types of neutron star activity have been proposed to follow one another in stages during the lives of neutron stars in the same basic population; the evolutionary connection between low-mass X-ray binaries and millisecond radio pulsars is perhaps the prime example.
An incomparable reference for astrophysicists studying pulsars and other kinds of neutron stars, Theory of Neutron Star Magnetospheres sums up two decades of astrophysical research. It provides in one volume the most important findings to date on this topic, essential to astrophysicists faced with a huge and widely scattered literature. F. Curtis Michel, who was among the first theorists to propose a neutron star model for radio pulsars, analyzes competing models of pulsars, radio emission models, winds and jets from pulsars, pulsating X-ray sources, gamma-ray burst sources, and other neutron-star driven phenomena. Although the book places primary emphasis on theoretical essentials, it also provides a considerable introduction to the observational data and its organization. Michel emphasizes the problems and uncertainties that have arisen in the research as well as the considerable progress that has been made to date.
Annotation Slane and Gaensler (both of the Harvard-Smithsonian Center for Astrophysics) present the proceedings of an August 2001 workshop devoted to young neutron stars and their associated supernova remnants, organized in light of observational advances since a similarly themed conference in 1998. Ninety-seven papers are organized into seven sections covering rotation-powered pulsars in supernova remnants, pulsar wind theory, evolution of pulsar nebulae, observations of pulsar nebulae, exotic neutron stars and their supernova remnants, isolated and binary neutron stars, and supernovae and supernova remnants. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com)
The book gives an extended review of theoretical and observational aspects of neutron star physics. With masses comparable to that of the Sun and radii of about ten kilometres, neutron stars are the densest stars in the Universe. This book describes all layers of neutron stars, from the surface to the core, with the emphasis on their structure and equation of state. Theories of dense matter are reviewed, and used to construct neutron star models. Hypothetical strange quark stars and possible exotic phases in neutron star cores are also discussed. Also covered are the effects of strong magnetic fields in neutron star envelopes.