Download Free Neutrinos And Other Matters Book in PDF and EPUB Free Download. You can read online Neutrinos And Other Matters and write the review.

This volume is a collection of the scientific papers of Frederick Reines. Its publication is to commemorate the 70th birthday, in 1988, of this distinguished scientist. The selected papers here cover many aspects of his work in neutrino physics, astrophysics and conservation law tests. They have been divided into logical groupings, each introduced by a leading authority in that field, who helps the reader to see the reprinted articles with a better historical and scientific perspective.
Dark Matter, Neutrinos, and Our Solar System is a unique enterprise that should be viewed as an important contribution to our understanding of dark matter, neutrinos and the solar system. It describes these issues in terms of links, between cosmology, particle and nuclear physics, as well as between cosmology, atmospheric and terrestrial physics. It studies the constituents of dark matter (classified as hot warm and cold) first in terms of their individual structures (baryonic and non-baryonic, massive and non-massive, interacting and non-interacting) and second, in terms of facilities available to detect these structures (large and small). Neutrinos (an important component of dark matter) are treated as a separate entity. A detailed study of these elusive (sub-atomic) particles is done, from the year 1913 when they were found as byproducts of beta decay — until the discovery in 2007 which confirmed that neutrino flavors were not more than three (as speculated by some).The last chapter of the book details the real-time stories about the “regions” that were not explored thus far, for lack of advanced technology. Their untold fascinating stories (which span up to 2010) are illustrated here datewise in full.The book concludes with the latest news that the Large Hadron Collider team at CERN has finally succeeded in producing 7 trillion electronic Volts of energy by creating head-on-collisions of protons and more protons (in search of God-particle). The energy produced was three times more than previous records.
In this essential, Claus Grupen discusses astroparticle physics in a short historical outline and describes the latest results without going into mathematical detail. As an introduction to this new field of research, he gives an overview of what happens in the sky, between stars and between galaxies. By now, many things are quite well understood, but with every solution found, new questions arise - the author also deals with this spectrum of questions with some answers. Today, astroparticle physics is an active, interdisciplinary field of research that includes and combines astronomy, cosmic rays and elementary particle physics. This book is a translation of the original German 1st edition Neutrinos, Dunkle Materie und Co. by Claus Grupen, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2021.The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors
"Neutrinos in Particle Physics, Astronomy and Cosmology" provides a comprehensive and up-to-date introduction to neutrino physics, neutrino astronomy and neutrino cosmology. The intrinsic properties and fundamental interactions of neutrinos are described, as is the phenomenology of lepton flavor mixing, seesaw mechanisms and neutrino oscillations. The cosmic neutrino background, stellar neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos, together with the cosmological matter-antimatter asymmetry and other roles of massive neutrinos in cosmology, are discussed in detail. This book is intended for researchers and graduate students in the fields of particle physics, particle astrophysics and cosmology. Dr. Zhizhong Xing is a professor at the Institute of High Energy Physics, Chinese Academy of Sciences, China; Dr. Shun Zhou is currently a postdoctoral fellow at the Max Planck Institute for Physics, Germany.
This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.
What we know about dark matter and what we have yet to discover Astronomical observations have confirmed dark matter’s existence, but what exactly is dark matter? In What Is Dark Matter?, particle physicist Peter Fisher introduces readers to one of the most intriguing frontiers of physics. We cannot actually see dark matter, a mysterious, nonluminous form of matter that is believed to account for about 27 percent of the mass-energy balance in the universe. But we know dark matter is present by observing its ghostly gravitational effects on the behavior and evolution of galaxies. Fisher brings readers quickly up to speed regarding the current state of the dark matter problem, offering relevant historical context as well as a close look at the cutting-edge research focused on revealing dark matter’s true nature. Could dark matter be a new type of particle—an axion or a Weakly Interacting Massive Particle (WIMP)—or something else? What have physicists ruled out so far—and why? What experimental searches are now underway and planned for the near future, in hopes of detecting dark matter on Earth or in space? Fisher explores these questions and more, illuminating what is known and unknown, and what a triumph it will be when scientists discover dark matter’s identity at last.
This book describes these issues in terms of links, between cosmology, particle and nuclear physics, as well as between cosmology, atmospheric and terrestrial physics. It studies the constituents of dark matter (classified as hot warm and cold) first in terms of their individual structures, and second, in terms of facilities available to detect these structures. Neutrinos are treated as a separate entity. The last chapter details the real-time stories about the "regions" that were not explored thus far, for lack of advanced technology. Their untold stories (which span up to 2010) are illustrated here datewise in full. The book concludes with the latest news that the Large Hadron Collider team at CERN has finally succeeded in producing 7 trillion electronic Volts of energy by creating head-on-collisions of protons and more protons (in search of God-particle).
The incredibly small bits of matter we call neutrinos may hold the secret to why antimatter is so rare, how mighty stars explode as supernovas and what the universe was like just seconds after the big bang. They even illuminate the inner workings of our own planet. For more than eighty years, adventurous minds from around the world have been chasing these ghostly particles, trillions of which pass through our bodies every second. Extremely elusive and difficult to pin down, neutrinos are not unlike the brilliant and eccentric scientists who doggedly pursue them. Ray Jayawardhana recounts in Neutrino Hunters a captivating saga of scientific discovery and celebrates a glorious human quest, revealing why the next decade of neutrino hunting could redefine how we think about physics, cosmology and our lives on Earth.
For over ten years, the dark side of the universe has been headline news. Detailed studies of the rotation of spiral galaxies, and 'mirages' created by clusters of galaxies bending the light from very remote objects, have convinced astronomers of the presence of large quantities of dark (unseen) matter in the cosmos. The most striking fact is that they seem to compromise about 95% of the matter/energy content of the universe. As for ordinary matter, although we are immersed in a sea of dark particles, including primordial neutrinos and photons from fossil cosmological radiation, both we and our environment are made of ordinary, 'baryonic' matter. Authors Mazure and Le Brun present the inventory of matter, baryonic and exotic, and investigating the nature and fate of matter's twin, anti-matter. They show how technological progress has been a result of basic research, in tandem with the evolution of new ideas, and how the combined effect of these advances might help lift the cosmic veil.