Download Free Neutrino Interaction Cross Section Ratios Measured With The T2k Near Detector Book in PDF and EPUB Free Download. You can read online Neutrino Interaction Cross Section Ratios Measured With The T2k Near Detector and write the review.

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
This book is based on the author's work in the T2K long-baseline neutrino oscillation experiment, in which neutrinos are generated by a proton beam and are detected by near and far neutrino detectors. In order to achieve the precise measurement of the neutrino oscillation, an accurate understanding of the neutrino beam and the neutrino interaction is essential. Thus, the author measured the neutrino beam properties and the neutrino interaction cross sections using a near neutrino detector called INGRID and promoted a better understanding of them. Then, the author performed a neutrino oscillation analysis using the neutrino beam and neutrino interaction models verified by the INGRID measurements. As a result, some values of the neutrino CP phase are disfavored at the 90% confidence level. If the measurement precision is further improved, we may be able to discover the finite CP phase which involves the CP violation. Thus, this result is an important step towards the discovery of CP violation in the lepton sector, which may be the key to understanding the origin of the matter–antimatter asymmetry in the universe.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
Reviews the current state of knowledge of neutrino masses and the related question of neutrino oscillations. After an overview of the theory of neutrino masses and mixings, detailed accounts are given of the laboratory limits on neutrino masses, astrophysical and cosmological constraints on those masses, experimental results on neutrino oscillations, the theoretical interpretation of those results, and theoretical models of neutrino masses and mixings. The book concludes with an examination of the potential of long-baseline experiments. This is an essential reference text for workers in elementary-particle physics, nuclear physics, and astrophysics.
This thesis reports the calculation of neutrino production for the T2K experiment; the most precise a priori estimate of neutrino production that has been achieved for any accelerator-based neutrino oscillation experiment to date. The production of intense neutrino beams at accelerator facilities requires exceptional understanding of chains of particle interactions initiated within extended targets. In this thesis, the calculation of neutrino production for T2K has been improved by using measurements of particle production from a T2K replica target, taken by the NA61/SHINE experiment. This enabled the reduction of the neutrino production uncertainty to the level of 5%, which will have a significant impact on neutrino oscillation and interaction measurements by T2K in the coming years. In addition to presenting the revised flux calculation methodology in an accessible format, this thesis also reports a joint T2K measurement of muon neutrino and antineutrino disappearance, and the accompanying electron neutrino and antineutrino appearance, with the updated beam constraint.
The Lepton-Photon symposiums ? as represented by the contributions in this volume ? are among the most popular conferences in high energy physics since they give an in-depth snapshots of the status of the field as provided by leading experts.The volume covers the latest results on flavor factories, quantum chromodynamics (QCD), electroweak physics, dark matter searches, neutrino physics and cosmology, from a phenomenological point of view. It also offers a glimpse of the immediate future of the field through summaries on the status of the next generation of high energy accelerators and planned facilities for astroparticle physics.The review nature of the articles makes the volume particularly useful to students, as well as being of interest to established researches in high-energy physics and related fields.
The neutrino is the most fascinating elementary particle due to its elusive nature and outstanding properties that have attracted the interest of generations of physicists since 1930, when it was first postulated by Wolfgang Pauli as a 'desperate remedy' to explain the apparent energy violation in the beta decay. Many fundamental discoveries in particle physics had the neutrino involved in one way or another. To date, neutrino physics is still one of the hottest topics of modern particle physics. Key experiments and significant theoretical developments have contributed in building up what we can call now the Standard Model of Neutrino Physics.The aim of the book is to provide graduate students and young researchers a comprehensive tutorial in modern neutrino physics, specially tailored with emphasis on the educational aspects. It provides an overview of the basics and of recent achievements in the field, from both experimental and theoretical points of view.
The Lepton-Photon symposiums — as represented by the contributions in this volume — are among the most popular conferences in high energy physics since they give an in-depth snapshots of the status of the field as provided by leading experts.The volume covers the latest results on flavor factories, quantum chromodynamics (QCD), electroweak physics, dark matter searches, neutrino physics and cosmology, from a phenomenological point of view. It also offers a glimpse of the immediate future of the field through summaries on the status of the next generation of high energy accelerators and planned facilities for astroparticle physics.The review nature of the articles makes the volume particularly useful to students, as well as being of interest to established researches in high-energy physics and related fields.
The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing i) students and scientists with an insight into the possibilities offered by beta-beams; ii) facility designers with a starting point for future studies; and iii) policy makers with a comprehensive picture of the limits and possibilities offered by a beta-beam./a
This book introduces particle physics, astrophysics and cosmology. Starting from an experimental perspective, it provides a unified view of these fields that reflects the very rapid advances being made. This new edition has a number of improvements and has been updated to describe the recent discovery of gravitational waves and astrophysical neutrinos, which started the new era of multimessenger astrophysics; it also includes new results on the Higgs particle. Astroparticle and particle physics share a common problem: we still don’t have a description of the main ingredients of the Universe from the point of view of its energy budget. Addressing these fascinating issues, and offering a balanced introduction to particle and astroparticle physics that requires only a basic understanding of quantum and classical physics, this book is a valuable resource, particularly for advanced undergraduate students and for those embarking on graduate courses. It includes exercises that offer readers practical insights. It can be used equally well as a self-study book, a reference and a textbook.