Download Free Neurotoxicity Book in PDF and EPUB Free Download. You can read online Neurotoxicity and write the review.

Scientists agree that exposure to toxic agents in the environment can cause neurological and psychiatric illnesses ranging from headaches and depression to syndromes resembling parkinsonism. It can even result in death at high exposure levels. The emergence of subclinical neurotoxicity-the concept that long-term impairments can escape clinical detection-makes the need for risk assessment even more critical. This volume paves the way toward definitive solutions, presenting the current consensus on risk assessment and environmental toxicants and offering specific recommendations. The book covers: The biologic basis of neurotoxicity. Progress in the application of biologic markers. Reviews of a wide range of in vitro and in vivo testing techniques. The use of surveillance and epidemiology to identify neurotoxic hazards that escape premarket screening. Research needs. This volume will be an important resource for policymakers, health specialists, researchers, and students.
This book reviews the scientific literature and the authors’ own research linking aluminum neurotoxicity with cognitive impairment and Alzheimer’s disease (AD). It focuses on aluminum levels in the brain, region-specific and subcellular distribution, and its relation to neurofibrillary tangles and amyloid beta. Further, the book stresses the importance of aluminum’s complex speciation chemistry in relation to biology, and details aluminum’s mechanism in oxidative stress and cell death, especially in connection with apoptosis and necroptosis. The electrophysiological variation and synaptic plasticity induced by aluminum are covered, while the metal’s debatable role in AD and the cross-talk between aluminum and genetic susceptibility are also discussed. In closing, the book reviews the neurotoxic effects of aluminum and its important role in the pathogenesis of AD. Given its depth of coverage, the book provides readers with a systematic summary of aluminum neurotoxicity.
Mercury (Hg) is a global pollutant that knows no environmental boundaries. Even the most stringent control of anthropogenic Hg sources will not eliminate exposure given its ubiquitous presence. Exposure to Hg occurs primarily via the food chain due to MeHg’s accumulation in fish. Latest US statistics indicate that 46 States have fish consumption advisories. In addition, Hg is a common pollutant in hazardous waste sites, with an estimated 3-4 million children living within one mile of at least one of the 1,300+ active hazardous waste sites in the US. The effects on intellectual function in children prenatally exposed to MeHg via maternal fish consumption have been the subject of two on-going major, prospective, longitudinal studies in the Seychelles and the Faroe Islands. It is important to recognize that the risk for MeHg exposure is not limited only to islanders with high fish consumption. This book will provide state-of-the-art information to the graduate student training in toxicology, risk assessors, researchers and medical providers at large. It is aimed to bring the reader up to date on contemporary issues associated with exposure to methylmercury, from its effects on stem cells and neurons to population studies.
Exposure to toxic chemicalsâ€"in the workplace and at homeâ€"is increasing every day. Human behavior can be affected by such exposure and can give important clues that a person or population is in danger. If we can understand the mechanisms of these changes, we can develop better ways of testing for toxic chemical exposure and, most important, better prevention programs. This volume explores the emerging field of neurobehavioral toxicology and the potential of behavior studies as a noninvasive and economical means for risk assessment and monitoring. Pioneers in this field explore its promise for detecting environmental toxins, protecting us from exposure, and treating those who are exposed.
Neurotoxicity of Nanomaterials and Nanomedicine presents an overview of the exciting research in neurotoxicity and nanomaterials. Nanomaterials have been extensively used in medicine, including diagnosis probes, drug carriers, and embedded materials. While some have been approved for clinical use, most nanomaterials are waiting to be transferred from lab to clinic. However, the toxicity is a main barrier that restricts the translation. This comprehensive book includes chapters on the most commonly used individual nanoparticles, with information on the applications, neurotoxicity, and related mechanisms of each, providing the most in-depth and current information available. The book examines the pathways that nanomaterials enter into, and eliminate, from the brain, along with the strategies that could reduce the neurotoxicity of nanomaterials. Providing a background to the subject, detailed information, and ideas for future directions in research, the book is essential for students and researchers in toxicology, and for those in medicine, neurology, pharmacology, pharmaceutical science, and materials science who are researching nanomaterials. Presents a thorough discussion of the most common nanoparticles in the brain and their neurotoxicology Includes the most common nanoparticles, their applications, and mechanisms Provides one of the first books to focus on nanomedicine and neurotoxicity
Role of Inflammation in Environmental Neurotoxicity, Volume Three, in this comprehensive serial, addresses contemporary advances in neurotoxicology by providing authoritative review articles on key issues in the field. Edited by leading subject experts, topics of note in this new release include Neuroinflammation (Introduction), Organophosphates, Lead, Manganese, Drugs of abuse, Peripheral vs central inflammation, Air pollution, Developmental neurotoxicity, Ethanol, and the Blood brain barrier, amongst other topics. Provides a unique, first of its kind resource Contributed to by world leaders in neurotoxicology Contains a diversity of topics (from molecular to epidemiology) in neurotoxicology
This book was written to inform the educated public about the potential hazards of neurotoxic substances. The impetus for this book was a telephone call in June, 1988, from Mr. Robert Esposito of Van Nostrand Reinhold. He wanted to know if I would be willing to write a book on neurotoxicity that would be suitable for industrial hygienists, safety professionals, occupational health personnel, and others interested in neurotoxicity, including psychologists, neuropsychologists, physicians, risk analyzers, and government regulators.
Clinical Neurotoxicology offers accurate, relevant, and comprehensive coverage of a field that has grown tremendously in the last 20 years. You’ll get a current symptomatic approach to treating disorders caused by neurotoxic agents, environmental factors—such as heavy metals and pesticides—and more. Apply discussions of cellular and molecular processes and pathology to clinical neurology. Leading authorities and up-and-coming clinical neurotoxicologists present their expertise on wide-ranging, global subjects and debate controversies in the specialty, including Gulf War Syndrome. Provides a complete listing of neurotoxic agents—from manufactured to environmental—so you get comprehensive, clinical coverage. Covers how toxins manifest themselves according to age and co-morbidity so that you can address the needs of all your patients. Offers broad and in-depth coverage of toxins from all over the world through contributions by leading authorities and up-and-coming clinical neurotoxicologists. Features discussion of controversial and unusual topics such as Gulf War Syndrome, Parkinson’s Disease, motor neuron disease, as well as other issues that are still in question.
Presenting the latest research in glial cell function gleaned from new techniques in imaging and molecular biology, The Role of Glia in Neurotoxicity, Second Edition covers multiple aspects of glial cells, including morphology, physiology, pharmacology, biochemistry, pathology, and their involvement in the pathophysiology of neurological diseases.
Most people associate fluoride with the practice of intentionally adding fluoride to public drinking water supplies for the prevention of tooth decay. However, fluoride can also enter public water systems from natural sources, including runoff from the weathering of fluoride-containing rocks and soils and leaching from soil into groundwater. Fluoride pollution from various industrial emissions can also contaminate water supplies. In a few areas of the United States fluoride concentrations in water are much higher than normal, mostly from natural sources. Fluoride is one of the drinking water contaminants regulated by the U.S. Environmental Protection Agency (EPA) because it can occur at these toxic levels. In 1986, the EPA established a maximum allowable concentration for fluoride in drinking water of 4 milligrams per liter, a guideline designed to prevent the public from being exposed to harmful levels of fluoride. Fluoride in Drinking Water reviews research on various health effects from exposure to fluoride, including studies conducted in the last 10 years.