Download Free Neuronal Information Processing From Biological Data To Modelling And Application Book in PDF and EPUB Free Download. You can read online Neuronal Information Processing From Biological Data To Modelling And Application and write the review.

Recent developments in the neurosciences have considerably modified our knowledge of both the operating modes of neurons and information processing in the cortex. Multi-unit recordings have enabled temporal correlations to be detected, within temporal windows of the order of 1ms. Oscillations corresponding to a quasi-periodic spike-giving, synchronized over several visual cortical areas, have been observed in anaesthesized cats and monkeys. Recent studies have also focused on the role played by the dendritic arborization.These developments have led to considerable interest in a coding scheme which relies on precise spatio-temporal patterns from both the theoretical and experimental points of view. This prompts us to look into new models for information processing which will proceed, for example, from a synchronous detection of correlated spike giving, and is particularly robust against noise. Such models could bring about original technical applications for information processing and control.Further developments in this field may be of major importance for our understanding of the basic mechanisms of perception and cognition. They could also lead to new concepts in applications directed towards artificial perception and pattern recognition. Up to now, artificial systems for pattern recognition are far from reaching the standards of human vision. Systems based on a temporal coding by spikes may now be expected to bring about major improvements in this field.This book covers the lectures delivered at a summer school on neuronal information processing. It includes information on all the above-mentioned developments, and also provides the reader with the state-of-the-art in every relevant field, including the neurosciences, physics, mathematics, and information and control theory.
Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.
Modern neural networks gave rise to major breakthroughs in several research areas. In neuroscience, we are witnessing a reappraisal of neural network theory and its relevance for understanding information processing in biological systems. The research presented in this book provides various perspectives on the use of artificial neural networks as models of neural information processing. We consider the biological plausibility of neural networks, performance improvements, spiking neural networks and the use of neural networks for understanding brain function.
The two-volume set CCIS 1516 and 1517 constitutes thoroughly refereed short papers presented at the 28th International Conference on Neural Information Processing, ICONIP 2021, held in Sanur, Bali, Indonesia, in December 2021.* The volume also presents papers from the workshop on Artificial Intelligence and Cyber Security, held during the ICONIP 2021. The 176 short and workshop papers presented in this volume were carefully reviewed and selected for publication out of 1093 submissions. The papers are organized in topical sections as follows: theory and algorithms; AI and cybersecurity; cognitive neurosciences; human centred computing; advances in deep and shallow machine learning algorithms for biomedical data and imaging; reliable, robust, and secure machine learning algorithms; theory and applications of natural computing paradigms; applications. * The conference was held virtually due to the COVID-19 pandemic.
The four volume set LNCS 9489, LNCS 9490, LNCS 9491, and LNCS 9492 constitutes the proceedings of the 22nd International Conference on Neural Information Processing, ICONIP 2015, held in Istanbul, Turkey, in November 2015. The 231 full papers presented were carefully reviewed and selected from 375 submissions. The 4 volumes represent topical sections containing articles on Learning Algorithms and Classification Systems; Artificial Intelligence and Neural Networks: Theory, Design, and Applications; Image and Signal Processing; and Intelligent Social Networks.
The three-volume set of LNCS 12532, 12533, and 12534 constitutes the proceedings of the 27th International Conference on Neural Information Processing, ICONIP 2020, held in Bangkok, Thailand, in November 2020. Due to COVID-19 pandemic the conference was held virtually. The 187 full papers presented were carefully reviewed and selected from 618 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The third volume, LNCS 12534, is organized in topical sections on biomedical information; neural data analysis; neural network models; recommender systems; time series analysis.
The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.
The three volume set LNCS 4232, LNCS 4233, and LNCS 4234 constitutes the refereed proceedings of the 13th International Conference on Neural Information Processing, ICONIP 2006, held in Hong Kong, China in October 2006. The 386 revised full papers presented were carefully reviewed and selected from 1175 submissions.
Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has been especially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.
This volume includes papers presented at the Third Annual Computation and Neural Systems meeting (CNS*94) held in Monterey California, July 21 - July 26, 1994. This collection includes 71 of the more than 100 papers presented at this year's meeting. Acceptance for meeting presentation was based on the peer review of preliminary papers by at least two referees. The papers in this volume were submitted in final form after the meeting. As represented by this volume, CNS meetings continue to expand in quality, size and breadth of focus as increasing numbers of neuroscientists are taking a computational approach to understanding nervous system function. The CNS meetings are intended to showcase the best of current research in computational neuroscience. As such the meeting is fundamentally focused on understanding the relationship between the structure of neIVOUS systems and their function. What is clear from the continued expansion of the CNS meetings is that computational approaches are increasingly being applied at all levels of neurobiological analysis. in an ever growing number of experimental preparations. and neural subsystems. Thus. experimental subjects range from crickets to primates; sensory systems range from vision to electroreception; experimental approaches range from realistic models of ion channels to the analysis of the information content of spike trains. For this reason, the eNS meetings represent an opportunity for computational neurobiologists to consider their research results in a much broader context than is usually possible.