Download Free Neuron Signaling In Metabolic Regulation Book in PDF and EPUB Free Download. You can read online Neuron Signaling In Metabolic Regulation and write the review.

This book focuses on neuron signaling in the regulation of metabolism and body weight, and especially on methods used in these studies. Obesity and related metabolic syndromes have reached epidemic status, but still are no effective strategies for prevention and treatment. Body weight homeostasis is maintained by balanced food intake and energy expenditure, both of which are under the control of brain neurons. In the recent years, significant progress has been made in identifying specific neurons, neural pathways, and non-neuron cells in feeding regulation, as well as in delineating autonomic nervous systems targeting peripheral metabolic tissues in the regulation of energy expenditure and metabolism. This book reviews recent progress on important neuron signaling for body weight and metabolic regulation and the state-of-the-art methods that has been applied in this field, ranging from animal models with neuron-specific manipulations, pharmacology, optogenetics, in vivo Ca2+ imaging, and viral tracing. Readers will be exposed to latest research frontiers on neuron regulation of metabolism. Key Features Explores the role signaling between neurons plays with respect to metabolism Documents how neurotransmitters affect the regulation of feeding Describes various methods and technologies used to study the neuronal control of metabolism Includes contributions from an international team of leading researchers. Related Titles Lim, W. & B. Mayer. Cell Signaling: Principles and Mechanisms (ISBN 978-0-8153-4244-1) Feltz, A. Physiology of Neurons (ISBN 978-0-8153-4600-5) Zempleni, J. & K. Dakshinamurti, eds. Nutrients and Cell Signaling (ISBN 978-0367-39307-6)
This book systemically describes the mechanisms underlying the neural regulation of metabolism. Metabolic diseases, including obesity and its associated conditions, currently affect more than 500 million people worldwide. Recent research has shown that the neural regulation of metabolism is a central mechanism that controls metabolic status physiologically and pathophysiologically. The book first introduces the latest studies on the neural and cellular mechanisms of hypothalamic neurons, hypothalamic glial cells, neural circuitries, cellular signaling pathways, and synaptic plasticity in the control of appetite, body weight, feeding-related behaviors and metabolic disorders. It then summarizes the humoral mechanisms by which critical adipocyte-derived hormones and lipoprotein lipase regulate lipid and glucose metabolism, and examines the role of the hypothalamus-sympathetic nerve, a critical nerve pathway from CNS to peripheral nervous system (PNS), in the regulation of metabolism in multiple tissues/organs. Furthermore, the book discusses the functions of adipose tissue in energy metabolism. Lastly, it explores dietary interventions to treat neural diseases and some of the emerging technologies used to study the neural regulation of metabolism. Presenting cutting-edge developments in the neural regulation of metabolism, the book is a valuable reference resource for graduate students and researchers in the field of neuroscience and metabolism.
This book focuses on neuron signaling in the regulation of metabolism and body weight, and especially on methods used in these studies. Obesity and related metabolic syndromes have reached epidemic status, but still are no effective strategies for prevention and treatment. Body weight homeostasis is maintained by balanced food intake and energy expenditure, both of which are under the control of brain neurons. In the recent years, significant progress has been made in identifying specific neurons, neural pathways, and non-neuron cells in feeding regulation, as well as in delineating autonomic nervous systems targeting peripheral metabolic tissues in the regulation of energy expenditure and metabolism. This book reviews recent progress on important neuron signaling for body weight and metabolic regulation and the state-of-the-art methods that has been applied in this field, ranging from animal models with neuron-specific manipulations, pharmacology, optogenetics, in vivo Ca2+ imaging, and viral tracing. Readers will be exposed to latest research frontiers on neuron regulation of metabolism. Key Features Explores the role signaling between neurons plays with respect to metabolism Documents how neurotransmitters affect the regulation of feeding Describes various methods and technologies used to study the neuronal control of metabolism Includes contributions from an international team of leading researchers. Related Titles Lim, W. & B. Mayer. Cell Signaling: Principles and Mechanisms (ISBN 978-0-8153-4244-1) Feltz, A. Physiology of Neurons (ISBN 978-0-8153-4600-5) Zempleni, J. & K. Dakshinamurti, eds. Nutrients and Cell Signaling (ISBN 978-0367-39307-6)
Brain Energy Metabolism addresses its challenging subject by presenting diverse technologies allowing for the investigation of brain energy metabolism on different levels of complexity. Model systems are discussed, starting from the reductionist approach like primary cell cultures which allow assessing of the properties and functions of a single brain cell type with many different types of analysis, however, at the expense of neglecting the interaction between cell types in the brain. On the other end, analysis in animals and humans in vivo is discussed, maintaining the full complexity of the tissue and the organism but making high demands on the methods of analysis. Written for the popular Neuromethods series, chapters include the kind of detailed description and key implementation advice that aims to support reproducible results in the lab. Meticulous and authoritative, Brain Energy Metabolism provides an ideal guide for researchers interested in brain energy metabolism with the hope of stimulating more research in this exciting and very important field.
This volume discusses current research on glial-neuronal interactions in several neuroendocrine systems. Glial-neuronal bidirectional transmission represents one of the fastest-growing areas of investigation in neuroscience today. Unraveling the interactions and signaling synergy between glial cells and neurons is critical to advancing our understanding of brain function. Consequently, this book summarizes the latest findings on the roles of astrocytes, microglia and tanycytes in the control of synaptic transmission, synaptic plasticity, blood-brain signaling, neuroinflammation and immune signaling. In addition, leading experts in the field discuss how reproductive function, the stress response and energy homeostasis are regulated by glial-neuronal communication. Given its scope, the book is essential reading for undergraduate and graduate students in the neurosciences, as well as postdoctoral fellows and established researchers who are looking for a comprehensive overview of glial-neuronal crosstalk in neuroendocrine systems. This is the eleventh volume in the International Neuroendocrine Federation (INF) Masterclass in Neuroendocrinology series (Volumes 1-7 published by Wiley), which aims to illustrate the highest standards and highlight the latest technologies in basic and clinical research, and aspires to provide inspiration for further exploration into the exciting field of neuroendocrinology.
This book is the result of the study of metabolic and hormonal disorders in patients suffering obesity and diabetes mellitus, focusing on mechanisms of formation of atherosclerotic changes in the myocardium and vessels in diabetes mellitus patient.
When an excessive proportion of the human energy requirement is derived from fat, the likelihood of obesity increases. Any such individual is at risk for diabetes and cardiovascular disease- grave and costly health hazards. The selective control of fat ingestion is a promising solution to these concerns. Existing data suggests that macronutrient intake can be manipulated. Further research is working to create pharmacological tools that will suppress fat consumption. It will also be possible to fight obesity, heart disease and diabetes. Neural and Metabolic Control of Macronutrient Intake systematically discusses the known physiological mechanisms involved in macronutrientselection, including their molecular, genetic and neurochemical aspects. The book is also a critical review of the hypothesis that ingestion of the three nutrients is regulated by separate neural control mechanisms, leaving open the possibility that strategies could be devised to intervene in bodily control systems and alter the proportion of fat in the diet. This reference provides three types of information: First, the basic background of the biochemical and physiological systems as they relate to macronutrient selection. Second, opinions and data concerning to what degree animals and humans show evidence of macronutrient selection. And, third, evidence about how the central nervous system might be involved in the choices animals make among macronutrients.
This book is a reprint of an English translation of Cajal's original work, with abundant notes and commentaries by the editor. This text describes Cajal's fundamental contributions to neuroscience, which continue to be important today. It accurately details Cajal's ideas and data, and providesreaders with the opportunity to learn what Cajal thought about his research career and the significance of his observations. Excerpts from Tello's memorial lectures also provide a contemporary view of Cajal's work.
The ?eld of sensory science has grown exponentially since the publication of the p- vious version of this work. Fifteen years ago the journal Food Quality and Preference was fairly new. Now it holds an eminent position as a venue for research on sensory test methods (among many other topics). Hundreds of articles relevant to sensory testing have appeared in that and in other journals such as the Journal of Sensory Studies. Knowledge of the intricate cellular processes in chemoreception, as well as their genetic basis, has undergone nothing less than a revolution, culminating in the award of the Nobel Prize to Buck and Axel in 2004 for their discovery of the olfactory receptor gene super family. Advances in statistical methodology have accelerated as well. Sensometrics meetings are now vigorous and well-attended annual events. Ideas like Thurstonian modeling were not widely embraced 15 years ago, but now seem to be part of the everyday thought process of many sensory scientists. And yet, some things stay the same. Sensory testing will always involve human participants. Humans are tough measuring instruments to work with. They come with varying degrees of acumen, training, experiences, differing genetic equipment, sensory capabilities, and of course, different preferences. Human foibles and their associated error variance will continue to place a limitation on sensory tests and actionable results. Reducing, controlling, partitioning, and explaining error variance are all at the heart of good test methods and practices.
Metabolism at a Glance presents a concise, illustrated summary of metabolism in health and disease. This essential text is progressively appropriate for introductory through to advanced medical and biochemistry courses. It also provides a succinct review of inborn errors of metabolism, and reference for postgraduate medical practitioners and biomedical scientists who need a resource to quickly refresh their knowledge. Fully updated and extensively illustrated, this new edition of Metabolism at a Glance is now in full colour throughout, and includes new coverage of sports biochemistry; the metabolism of lipids, carbohydrates and cholesterol; glyceroneogenesis, α-oxidation and ω-oxidation of fatty acids. It also features the overlooked “Krebs Uric Acid Cycle”. Metabolism at a Glance offers an accessible introduction to metabolism, and is ideal as a revision aid for students preparing for undergraduate and USMLE Step 1 exams.