Download Free Neurochemical Aspects Of Alzheimers Disease Book in PDF and EPUB Free Download. You can read online Neurochemical Aspects Of Alzheimers Disease and write the review.

This open access book provides insight on how to interpret capability in ageing – one’s individual ability to perform actions in order to reach goals one has reason to value – from a multidisciplinary approach. With for the first time in history there being more people in the world aged 60 years and over than there are children below the age of 5, the book describes this demographic trends as well as the large global challenges and important societal implications this will have such as a worldwide increase in the number of persons affected with dementia, and in the ratio of retired persons to those still in the labor market. Through contributions from many different research areas, it discussed how capability depends on interactions between the individual (e.g. health, genetics, personality, intellectual capacity), environment (e.g. family, friends, home, work place), and society (e.g. political decisions, ageism, historical period). The final chapter summarizes the differences and similarities in these contributions. As such this book provides an interesting read for students, teachers and researchers at different levels and from different fields interested in capability and multidisciplinary research.
Neurochemical Aspects of Alzheimer's Disease provides a comprehensive overview of molecular aspects of risk factors, pathogenesis, biomarkers, and therapeutic strategies. The book focuses on molecular mechanisms and signal transduction processes associated with the pathogenesis, biomarkers, and therapeutic strategies of AD. The comprehensive and cutting edge information in this monograph may not only help in early detection of AD, but also promote discovery of new drugs to treat this chronic disease. Chapters discuss involvement of neural membrane phospholipids, sphingolipids, and cholesterol-derived lipid mediators, abnormal APP processing, and nucleic acid damage, risk factors, biomarker, and therapeutic strategies of Alzheimer's disease. This book is written for neurologists, neuroscientists, neurochemists, neuropharmacologists, and clinicianswho are interested in molecular mechanisms associated with the pathogenesis of age-related neurological disorders. - Provides a comprehensive overview of molecular aspects of risk factors, pathogenesis, biomarkers, and therapeutic strategies for Alzheimer's disease - Written for researchers, clinicians, and advanced graduate students in neurology, neuroscience, neurochemistry, and neuropharmacology - Acts as the first book to provide a comprehensive description of the signal transduction processes associated with pathogenesis of Alzheimer's disease
Alzheimer's disease is the most common form of dementia in the elderly; 450,000 people in the UK and 4.5 million people in the USA suffer with this disease. This 3rd edition of Neurobiology of Alzheimer's Disease gives a comprehensive and readable introduction to the disease, from molecular pathology to clinical practice. The book is intended for readers new to the field, and it also covers an extensive range of themes for those with in-depth knowledge of Alzheimer's disease. It will therefore act either as an introduction to the whole field of neurodegeneration or it will help experienced researchers to access the latest research in specialist topics. Each chapter is written by eminent scientists leading their fields in neuropathology, clinical practice and molecular neurobiology; appendices detail disease-associate proteins, their sequences, familial mutations and known structures. It will be essential reading for students interested in neurodegeneration and for researchers and clinicians, giving a coherent and cohesive approach to the whole area of research, and allowing access at different levels. For those in the pharmaceutical industry it describes the underlying molecular mechanisms involved in the pathogenesis of Alzheimer's disease and explains how current and potential therapeutics may work.
Neurochemistry is a flourishing academic field that contributes to our understanding of molecular, cellular and medical neurobiology. As a scientific discipline, neurochemistry studies the role of chemicals that build the nervous system, it explores the function of neurons and glial cells in health and disease, it discovers aspects of cell metabolism and neurotransmission, and it reveals how degenerative processes are at work in the nervous system. Accordingly, this book contains chapters from a variety of topics that fall into the following broad sections: I. Neural Membranes and Intracellular Signaling, II. Neural Processing and Intercellular Signaling, III. Growth, Development and Differentiation, and IV. Neurodegenerative Diseases. The book presents comprehensive reviews in these different areas written by experts in their respective fields. Neurodegeneration and neuronal diseases are featured prominently and are a recurring theme throughout most chapters. This book will be a most valuable resource for neurochemists and other scientists alike. In addition, it will contribute to the training of current and future neurochemists and, hopefully, will lead us on the path to curing some of the biggest challenges in human health.
Collectively, neurodegenerative diseases are characterized by chronic and progressive loss of neurons in discrete areas of the brain, producing debilitating symptoms such as dementia, loss of memory, loss of sensory or motor capability, decreased overall quality of life eventually leading to premature death. Two types of cell death are known to occur during neurodegeneration: (a) apoptosis and (b) necrosis. The necrosis is characterized by the passive cell swelling, intense mitochondrial damage with rapid loss of ATP, alterations in neural membrane permeability, high calcium influx, and disruption of ion homeostasis. This type of cell death leads to membrane lysis and release of intracellular components that induce inflammatory reactions. Necrotic cell death normally occurs at the core of injury site. In contrast, apoptosis is an active process in which caspases (a group of endoproteases with specificity for aspartate residues in protein) are stimulated. Apoptotic cell death is accompanied by cell shrinkage, dynamic membrane blebbing, chromatin condensation, DNA laddering, loss of phospholipids asymmetry, low ATP levels, and mild calcium overload. This type of cell death normally occurs in penumbral region at the ischemic injury site and in different regions in various neurodegenerative diseases.
Phytochemicals are naturally occurring bioactive compounds found in edible fruits, plants, vegetables, and herbs. Unlike vitamins and minerals, phytochemicals are not needed for the maintenance of cell viability, but they play a vital role in protecting neural cells from inflammation and oxidative stress associated with normal aging and acute and chronic age-related brain diseases. Neuroprotective Effects of Phytochemicals in Neurological Disorders explores the advances in our understanding of the potential neuroprotective benefits that these naturally occurring chemicals contain. Neuroprotective Effects of Phytochemicals in Neurological Disorders explores the role that a number of plant-based chemical compounds play in a wide variety of neurological disorders. Chapters explore the impact of phytochemicals on neurotraumatic disorders, such as stroke and spinal cord injury, alongside neurodegenerative diseases such as Alzheimer's and Parkinson's Disease, as well as neuropsychiatric disorders such as depression and schizophrenia. The chapters and sections of this book provide the reader with a big picture view of this field of research. Neuroprotective Effects of Phytochemicals in Neurological Disorders aims to present readers with a comprehensive and cutting edge look at the effects of phytochemicals on the brain and neurological disorders in a manner useful to researchers, neuroscientists, clinical nutritionists, and physicians.
Distils the most valuable discoveries in dementia research into clear, insightful chapters written by international experts.
A practical guide to the origins and treatment options for agitation, a common symptom of psychiatric and neurologic disorders.
Reduced production of DHEA associated with the diseases that accompany aging has led to its use as a nutritional supplement for antiaging, metabolic support, and other purposes. While animal studies have clearly shown substantial benefits of DHEA in combating various disease states, the effect of low levels of DHEA in humans is less established, an
The third edition of this successful textbook has been completely updated throughout and includes new chapters on electrophysiological tests, biological markers, global staging measures, and management of neuropsychiatric symptoms. There has been steady progress in our understanding of the natural history, prognostic factors and treatments for Alzh