Download Free Neural Networks In Bioprocessing And Chemical Engineering Book in PDF and EPUB Free Download. You can read online Neural Networks In Bioprocessing And Chemical Engineering and write the review.

Neural networks have received a great deal of attention among scientists and engineers. In chemical engineering, neural computing has moved from pioneering projects toward mainstream industrial applications. This book introduces the fundamental principles of neural computing, and is the first to focus on its practical applications in bioprocessing and chemical engineering. Examples, problems, and 10 detailed case studies demonstrate how to develop, train, and apply neural networks. A disk containing input data files for all illustrative examples, case studies, and practice problems provides the opportunity for hands-on experience. An important goal of the book is to help the student or practitioner learn and implement neural networks quickly and inexpensively using commercially available, PC-based software tools. Detailed network specifications and training procedures are included for all neural network examples discussed in the book.Each chapter contains an introduction, chapter summary, references to further reading, practice problems, and a section on nomenclatureIncludes a PC-compatible disk containing input data files for examples, case studies, and practice problemsPresents 10 detailed case studiesContains an extensive glossary, explaining terminology used in neural network applications in science and engineeringProvides examples, problems, and ten detailed case studies of neural computing applications, including:Process fault-diagnosis of a chemical reactorLeonardKramer fault-classification problemProcess fault-diagnosis for an unsteady-state continuous stirred-tank reactor systemClassification of protein secondary-structure categoriesQuantitative prediction and regression analysis of complex chemical kineticsSoftware-based sensors for quantitative predictions of product compositions from flourescent spectra in bioprocessingQuality control and optimization of an autoclave curing process for manufacturing composite materialsPredictive modeling of an experimental batch fermentation processSupervisory control of the Tennessee Eastman plantwide control problemPredictive modeling and optimal design of extractive bioseparation in aqueous two-phase systems
Neural networks have received a great deal of attention among scientists and engineers. In chemical engineering, neural computing has moved from pioneering projects toward mainstream industrial applications. This book introduces the fundamental principles of neural computing, and is the first to focus on its practical applications in bioprocessing and chemical engineering. Examples, problems, and 10 detailed case studies demonstrate how to develop, train, and apply neural networks. A disk containing input data files for all illustrative examples, case studies, and practice problems provides the opportunity for hands-on experience. An important goal of the book is to help the student or practitioner learn and implement neural networks quickly and inexpensively using commercially available, PC-based software tools. Detailed network specifications and training procedures are included for all neural network examples discussed in the book.
This book is a follow-up to the IChemE symposium on “Neural Networks and Other Learning Technologies”, held at Imperial College, UK, in May 1999. The interest shown by the participants, especially those from the industry, has been instrumental in producing the book. The papers have been written by contributors of the symposium and experts in this field from around the world. They present all the important aspects of neural network utilisation as well as show the versatility of neural networks in various aspects of process engineering problems — modelling, estimation, control, optimisation and industrial applications.
This book introduces readers to the Artificial Neural Network (ANN) and Hybrid Neural (HN) models: two effective tools, which can be exploited to design and control industrial processes. Different topics including modeling, simulation and process design are covered. More efficient analyses and descriptions of real case studies, ranging from membrane technology to the obtaining of second-generation biofuels are also provided. One of the major advantages of the described techniques is represented by the possibility of obtaining accurate predictions of complex systems, whose behaviors might be difficult to describe by conventional first-principle models. One of the major impacts of the present book is to show the true interactions and interconnectivities among different topics belonging to chemical, bio-chemical engineering, energy, bio-processes and bio-technique research fields. Some of the main goals are here are to provide a deep and detailed knowledge about the main features of both ANN and HN models, and to iterate possible topologies to integrate in these ANN and mechanistic models; to cover a wide spectrum of different problems as well as innovative and unconventional modeling techniques; to show how various kinds of advanced models can be exploited either to predict the behavior or to optimize the performance of real processes.
Experimental Methods and Instrumentation for Chemical Engineers, Second Edition, touches many aspects of engineering practice, research, and statistics. The principles of unit operations, transport phenomena, and plant design constitute the focus of chemical engineering in the latter years of the curricula. Experimental methods and instrumentation is the precursor to these subjects. This resource integrates these concepts with statistics and uncertainty analysis to define what is necessary to measure and to control, how precisely and how often.The completely updated second edition is divided into several themes related to data: metrology, notions of statistics, and design of experiments. The book then covers basic principles of sensing devices, with a brand new chapter covering force and mass, followed by pressure, temperature, flow rate, and physico-chemical properties. It continues with chapters that describe how to measure gas and liquid concentrations, how to characterize solids, and finally a new chapter on spectroscopic techniques such as UV/Vis, IR, XRD, XPS, NMR, and XAS. Throughout the book, the author integrates the concepts of uncertainty, along with a historical context and practical examples.A problem solutions manual is available from the author upon request. - Includes the basics for 1st and 2nd year chemical engineers, providing a foundation for unit operations and transport phenomena - Features many practical examples - Offers exercises for students at the end of each chapter - Includes up-to-date detailed drawings and photos of equipment
The success of Bioinformatics in recent years has been prompted by research in mole- lar biology and medicine in initiatives like the human genome project. The volume and diversification of data has increased so much that it is very hard if not impossible to analyze it by human experts. The analysis of this growing body of data, intensified by the development of a number of high-throughput experimental techniques that are generating the so called 'omics' data, has prompted for new computational methods. New global approaches, such as Systems Biology, have been emerging replacing the reductionist view that dominated biology research in the last decades, requiring the coordinated efforts of biological researchers with those related to data analysis, mathematical modelling and computer science. Computational methods have been helping in tasks related to knowledge discovery, modelling and optimization tasks. This workshop brings the opportunity to discuss applications of Bioinformatics and Computational Biology exploring the interactions between computer scientists, bio- gists and other scientific researchers. The IWPACBB technical program includes 29 papers (23 long papers and 6 short papers) selected from a submission pool of 51 papers, from 9 different countries. We thank the excellent work of the local organization members and also from the members of the Program Committee for their excellent reviewing work. October 2008 Juan M. Corchado Juan F. De Paz Miguel P. Rocha Florentino Fernández Riverola Organization
Computational Intelligence (CI) and Bioprocess are well-established research areas which have much to offer each other. Under the perspective of the CI area, Biop- cess can be considered a vast application area with a growing number of complex and challenging tasks to be dealt with, whose solutions can contribute to boosting the development of new intelligent techniques as well as to help the refinement and s- cialization of many of the already existing techniques. Under the perspective of the Bioprocess area, CI can be considered a useful repertoire of theories, methods and techniques that can contribute and offer interesting alternative approaches for solving many of its problems, particularly those hard to solve using conventional techniques. Although throughout the past years CI and Bioprocess areas have accumulated substantial specific knowledge and progress has been quick and with a high degree of success, we believe there is still a long way to go in order to use the potentialities of the available CI techniques and knowledge at their full extent, as tools for supporting problem solving in bioprocesses. One of the reasons is the fact that both areas have progressed steadily and have been continuously accumulating and refining specific knowledge; another reason is the high level of technical expertise demanded by each of them. The acquisition of technical skills, experience and good insights in either of the two areas is very demanding and a hard task to be accomplished by any professional.
Computational Intelligence (CI) and Bioprocess are well-established research areas which have much to offer each other. Under the perspective of the CI area, Biop- cess can be considered a vast application area with a growing number of complex and challenging tasks to be dealt with, whose solutions can contribute to boosting the development of new intelligent techniques as well as to help the refinement and s- cialization of many of the already existing techniques. Under the perspective of the Bioprocess area, CI can be considered a useful repertoire of theories, methods and techniques that can contribute and offer interesting alternative approaches for solving many of its problems, particularly those hard to solve using conventional techniques. Although throughout the past years CI and Bioprocess areas have accumulated substantial specific knowledge and progress has been quick and with a high degree of success, we believe there is still a long way to go in order to use the potentialities of the available CI techniques and knowledge at their full extent, as tools for supporting problem solving in bioprocesses. One of the reasons is the fact that both areas have progressed steadily and have been continuously accumulating and refining specific knowledge; another reason is the high level of technical expertise demanded by each of them. The acquisition of technical skills, experience and good insights in either of the two areas is very demanding and a hard task to be accomplished by any professional.
HANDBOOK OF INTELLIGENT COMPUTING AND OPTIMIZATION FOR SUSTAINABLE DEVELOPMENT This book provides a comprehensive overview of the latest breakthroughs and recent progress in sustainable intelligent computing technologies, applications, and optimization techniques across various industries. Optimization has received enormous attention along with the rapidly increasing use of communication technology and the development of user-friendly software and artificial intelligence. In almost all human activities, there is a desire to deliver the highest possible results with the least amount of effort. Moreover, optimization is a very well-known area with a vast number of applications, from route finding problems to medical treatment, construction, finance, accounting, engineering, and maintenance schedules in plants. As far as optimization of real-world problems is concerned, understanding the nature of the problem and grouping it in a proper class may help the designer employ proper techniques which can solve the problem efficiently. Many intelligent optimization techniques can find optimal solutions without the use of objective function and are less prone to local conditions. The 41 chapters comprising the Handbook of Intelligent Computing and Optimization for Sustainable Development by subject specialists, represent diverse disciplines such as mathematics and computer science, electrical and electronics engineering, neuroscience and cognitive sciences, medicine, and social sciences, and provide the reader with an integrated understanding of the importance that intelligent computing has in the sustainable development of current societies. It discusses the emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative intelligent techniques in a variety of sectors, including IoT, manufacturing, optimization, and healthcare. Audience It is a pivotal reference source for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research in emerging perspectives in the field of artificial intelligence in the areas of Internet of Things, renewable energy, optimization, and smart cities.