Download Free Neural Network Computer Vision With Opencv 5 Book in PDF and EPUB Free Download. You can read online Neural Network Computer Vision With Opencv 5 and write the review.

Unlocking computer vision with Python and OpenCV KEY FEATURES ● Practical solutions to image processing challenges. ● Detect and classify objects in images. ● Recognize faces and text from images using character detection and recognition models. DESCRIPTION Neural Network Computer Vision with OpenCV equips you with professional skills and knowledge to build intelligent vision systems using OpenCV. It creates a sequential pathway for understanding morphological operations, edge and corner detection, object localization, image classification, segmentation, and advanced applications like face detection and recognition, and optical character recognition. This book offers a practical roadmap to explore the nuances of image processing with detailed discussions on each topic, supported by hands-on Python code examples. The readers will learn the basics of neural networks, deep learning and CNNs by using deep learning frameworks like Keras, Tensorflow, PyTorch, Caffe etc. They will be able to utilize OpenCV DNN module to classify images by using models like Inception V3, Resnet 101, Mobilenet V2. Moreover, the book will help to successfully Implement object detection using YOLOv3, SSD and R-CNN models. The character detection and recognition models are also covered in depth with code examples. You will gain a deeper understanding of how these techniques impact real-world scenarios and learn to harness the potential of Python and OpenCV to solve complex problems. Whether you are building intelligent systems, automating processes, or working on image-related projects, this book equips you with the skills to revolutionize your approach to visual data. WHAT YOU WILL LEARN ● Acquire expertise in image manipulation techniques. ● Apply knowledge to practical scenarios in computer vision. ● Implement robust systems for face detection and recognition. ● Enhance projects with accurate object localization capabilities. ● Extract text information from images effectively. WHO THIS BOOK IS FOR This book is designed for those with basic Python skills, from beginners to intermediate-level readers. Whether you are building intelligent robots that perceive their surroundings or crafting advanced vision systems for object detection and image analysis, this book will equip you with the tools and skills to push the boundaries of AI perception. TABLE OF CONTENTS 1. Introduction to Computer Vision 2. Basics of Imaging 3. Challenges in Computer Vision 4. Classical Solutions 5. Deep Learning and CNNs 6. OpenCV DNN Module 7. Modern Solutions for Image Classification 8. Modern Solutions for Object Detection 9. Faces and Text 10. Running the Code 11. End-to-end Demo
Conceptualizing deep learning in computer vision applications using PyTorch and Python libraries. KEY FEATURES ● Covers a variety of computer vision projects, including face recognition and object recognition such as Yolo, Faster R-CNN. ● Includes graphical representations and illustrations of neural networks and teaches how to program them. ● Includes deep learning techniques and architectures introduced by Microsoft, Google, and the University of Oxford. DESCRIPTION Elements of Deep Learning for Computer Vision gives a thorough understanding of deep learning and provides highly accurate computer vision solutions while using libraries like PyTorch. This book introduces you to Deep Learning and explains all the concepts required to understand the basic working, development, and tuning of a neural network using Pytorch. The book then addresses the field of computer vision using two libraries, including the Python wrapper/version of OpenCV and PIL. After establishing and understanding both the primary concepts, the book addresses them together by explaining Convolutional Neural Networks(CNNs). CNNs are further elaborated using top industry standards and research to explain how they provide complicated Object Detection in images and videos, while also explaining their evaluation. Towards the end, the book explains how to develop a fully functional object detection model, including its deployment over APIs. By the end of this book, you are well-equipped with the role of deep learning in the field of computer vision along with a guided process to design deep learning solutions. WHAT YOU WILL LEARN ● Get to know the mechanism of deep learning and how neural networks operate. ● Learn to develop a highly accurate neural network model. ● Access to rich Python libraries to address computer vision challenges. ● Build deep learning models using PyTorch and learn how to deploy using the API. ● Learn to develop Object Detection and Face Recognition models along with their deployment. WHO THIS BOOK IS FOR This book is for the readers who aspire to gain a strong fundamental understanding of how to infuse deep learning into computer vision and image processing applications. Readers are expected to have intermediate Python skills. No previous knowledge of PyTorch and Computer Vision is required. TABLE OF CONTENTS 1. An Introduction to Deep Learning 2. Supervised Learning 3. Gradient Descent 4. OpenCV with Python 5. Python Imaging Library and Pillow 6. Introduction to Convolutional Neural Networks 7. GoogLeNet, VGGNet, and ResNet 8. Understanding Object Detection 9. Popular Algorithms for Object Detection 10. Faster RCNN with PyTorch and YoloV4 with Darknet 11. Comparing Algorithms and API Deployment with Flask 12. Applications in Real World
Build practical applications of computer vision using the OpenCV library with Python. This book discusses different facets of computer vision such as image and object detection, tracking and motion analysis and their applications with examples. The author starts with an introduction to computer vision followed by setting up OpenCV from scratch using Python. The next section discusses specialized image processing and segmentation and how images are stored and processed by a computer. This involves pattern recognition and image tagging using the OpenCV library. Next, you’ll work with object detection, video storage and interpretation, and human detection using OpenCV. Tracking and motion is also discussed in detail. The book also discusses creating complex deep learning models with CNN and RNN. The author finally concludes with recent applications and trends in computer vision. After reading this book, you will be able to understand and implement computer vision and its applications with OpenCV using Python. You will also be able to create deep learning models with CNN and RNN and understand how these cutting-edge deep learning architectures work. What You Will LearnUnderstand what computer vision is, and its overall application in intelligent automation systems Discover the deep learning techniques required to build computer vision applications Build complex computer vision applications using the latest techniques in OpenCV, Python, and NumPy Create practical applications and implementations such as face detection and recognition, handwriting recognition, object detection, and tracking and motion analysis Who This Book Is ForThose who have a basic understanding of machine learning and Python and are looking to learn computer vision and its applications.
Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key FeaturesImplement solutions to 50 real-world computer vision applications using PyTorchUnderstand the theory and working mechanisms of neural network architectures and their implementationDiscover best practices using a custom library created especially for this bookBook Description Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You’ll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You’ll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you’ll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You’ll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you’ll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learnTrain a NN from scratch with NumPy and PyTorchImplement 2D and 3D multi-object detection and segmentationGenerate digits and DeepFakes with autoencoders and advanced GANsManipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGANCombine CV with NLP to perform OCR, image captioning, and object detectionCombine CV with reinforcement learning to build agents that play pong and self-drive a carDeploy a deep learning model on the AWS server using FastAPI and DockerImplement over 35 NN architectures and common OpenCV utilitiesWho this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you’ll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.
Organizations spend huge resources in developing software that can perform the way a human does. Image classification, object detection and tracking, pose estimation, facial recognition, and sentiment estimation all play a major role in solving computer vision problems. This book will bring into focus these and other deep learning architectures and techniques to help you create solutions using Keras and the TensorFlow library. You'll also review mutliple neural network architectures, including LeNet, AlexNet, VGG, Inception, R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, YOLO, and SqueezeNet and see how they work alongside Python code via best practices, tips, tricks, shortcuts, and pitfalls. All code snippets will be broken down and discussed thoroughly so you can implement the same principles in your respective environments. Computer Vision Using Deep Learning offers a comprehensive yet succinct guide that stitches DL and CV together to automate operations, reduce human intervention, increase capability, and cut the costs. What You'll Learn Examine deep learning code and concepts to apply guiding principals to your own projects Classify and evaluate various architectures to better understand your options in various use cases Go behind the scenes of basic deep learning functions to find out how they work Who This Book Is For Professional practitioners working in the fields of software engineering and data science. A working knowledge of Python is strongly recommended. Students and innovators working on advanced degrees in areas related to computer vision and Deep Learning.
Updated for OpenCV 4 and Python 3, this book covers the latest on depth cameras, 3D tracking, augmented reality, and deep neural networks, helping you solve real-world computer vision problems with practical code Key Features Build powerful computer vision applications in concise code with OpenCV 4 and Python 3 Learn the fundamental concepts of image processing, object classification, and 2D and 3D tracking Train, use, and understand machine learning models such as Support Vector Machines (SVMs) and neural networks Book Description Computer vision is a rapidly evolving science, encompassing diverse applications and techniques. This book will not only help those who are getting started with computer vision but also experts in the domain. You'll be able to put theory into practice by building apps with OpenCV 4 and Python 3. You'll start by understanding OpenCV 4 and how to set it up with Python 3 on various platforms. Next, you'll learn how to perform basic operations such as reading, writing, manipulating, and displaying still images, videos, and camera feeds. From taking you through image processing, video analysis, and depth estimation and segmentation, to helping you gain practice by building a GUI app, this book ensures you'll have opportunities for hands-on activities. Next, you'll tackle two popular challenges: face detection and face recognition. You'll also learn about object classification and machine learning concepts, which will enable you to create and use object detectors and classifiers, and even track objects in movies or video camera feed. Later, you'll develop your skills in 3D tracking and augmented reality. Finally, you'll cover ANNs and DNNs, learning how to develop apps for recognizing handwritten digits and classifying a person's gender and age. By the end of this book, you'll have the skills you need to execute real-world computer vision projects. What you will learn Install and familiarize yourself with OpenCV 4's Python 3 bindings Understand image processing and video analysis basics Use a depth camera to distinguish foreground and background regions Detect and identify objects, and track their motion in videos Train and use your own models to match images and classify objects Detect and recognize faces, and classify their gender and age Build an augmented reality application to track an image in 3D Work with machine learning models, including SVMs, artificial neural networks (ANNs), and deep neural networks (DNNs) Who this book is for If you are interested in learning computer vision, machine learning, and OpenCV in the context of practical real-world applications, then this book is for you. This OpenCV book will also be useful for anyone getting started with computer vision as well as experts who want to stay up-to-date with OpenCV 4 and Python 3. Although no prior knowledge of image processing, computer vision or machine learning is required, familiarity with basic Python programming is a must.
Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.
Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze an image dataset. Along the way you will cover artificial neural networks (ANNs), building one from scratch in Python, before optimizing it using genetic algorithms. For automating the process, the book highlights the limitations of traditional hand-crafted features for computer vision and why the CNN deep-learning model is the state-of-art solution. CNNs are discussed from scratch to demonstrate how they are different and more efficient than the fully connected ANN (FCNN). You will implement a CNN in Python to give you a full understanding of the model. After consolidating the basics, you will use TensorFlow to build a practical image-recognition model that you will deploy to a web server using Flask, making it accessible over the Internet. Using Kivy and NumPy, you will create cross-platform data science applications with low overheads. This book will help you apply deep learning and computer vision concepts from scratch, step-by-step from conception to production. What You Will Learn Understand how ANNs and CNNs work Create computer vision applications and CNNs from scratch using PythonFollow a deep learning project from conception to production using TensorFlowUse NumPy with Kivy to build cross-platform data science applications Who This Book Is ForData scientists, machine learning and deep learning engineers, software developers.
Get to grips with traditional computer vision algorithms and deep learning approaches, and build real-world applications with OpenCV and other machine learning frameworks Key FeaturesUnderstand how to capture high-quality image data, detect and track objects, and process the actions of animals or humansImplement your learning in different areas of computer visionExplore advanced concepts in OpenCV such as machine learning, artificial neural network, and augmented realityBook Description OpenCV is a native cross-platform C++ library for computer vision, machine learning, and image processing. It is increasingly being adopted in Python for development. This book will get you hands-on with a wide range of intermediate to advanced projects using the latest version of the framework and language, OpenCV 4 and Python 3.8, instead of only covering the core concepts of OpenCV in theoretical lessons. This updated second edition will guide you through working on independent hands-on projects that focus on essential OpenCV concepts such as image processing, object detection, image manipulation, object tracking, and 3D scene reconstruction, in addition to statistical learning and neural networks. You’ll begin with concepts such as image filters, Kinect depth sensor, and feature matching. As you advance, you’ll not only get hands-on with reconstructing and visualizing a scene in 3D but also learn to track visually salient objects. The book will help you further build on your skills by demonstrating how to recognize traffic signs and emotions on faces. Later, you’ll understand how to align images, and detect and track objects using neural networks. By the end of this OpenCV Python book, you’ll have gained hands-on experience and become proficient at developing advanced computer vision apps according to specific business needs. What you will learnGenerate real-time visual effects using filters and image manipulation techniques such as dodging and burningRecognize hand gestures in real-time and perform hand-shape analysis based on the output of a Microsoft Kinect sensorLearn feature extraction and feature matching to track arbitrary objects of interestReconstruct a 3D real-world scene using 2D camera motion and camera reprojection techniquesDetect faces using a cascade classifier and identify emotions in human faces using multilayer perceptronsClassify, localize, and detect objects with deep neural networksWho this book is for This book is for intermediate-level OpenCV users who are looking to enhance their skills by developing advanced applications. Familiarity with OpenCV concepts and Python libraries, and basic knowledge of the Python programming language are assumed.
Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python—and some understanding of machine learning concepts—is required to get the best out of this book.