Download Free Networking Humans Robots And Environments Book in PDF and EPUB Free Download. You can read online Networking Humans Robots And Environments and write the review.

This book dives into the heart of how to design distributed control architectures for heterogeneous teams of humans, robots, and automated systems, enabling them to achieve greater cooperation and autonomy through the use of network technologies. It provides a wide range of practical, proven strategies for pervasive communication and collaborative problem solving abilities of humans, robots, and their environments. Each chapter consists of a presentation of findings from the latest research in networked robots and ambient intelligence. The chapters also detail how to allow robots to achieve universal access to the extended functionality of the environment that brings various cost effective services to those in need. Readers can envision a realistic view of what can be expected from a networked human robot cooperative environment in the next decade.
Cognitive Computing for Human-Robot Interaction: Principles and Practices explores the efforts that should ultimately enable society to take advantage of the often-heralded potential of robots to provide economical and sustainable computing applications. This book discusses each of these applications, presents working implementations, and combines coherent and original deliberative architecture for human–robot interactions (HRI). Supported by experimental results, it shows how explicit knowledge management promises to be instrumental in building richer and more natural HRI, by pushing for pervasive, human-level semantics within the robot's deliberative system for sustainable computing applications. This book will be of special interest to academics, postgraduate students, and researchers working in the area of artificial intelligence and machine learning. Key features: - Introduces several new contributions to the representation and management of humans in autonomous robotic systems; - Explores the potential of cognitive computing, robots, and HRI to generate a deeper understanding and to provide a better contribution from robots to society; - Engages with the potential repercussions of cognitive computing and HRI in the real world. - Introduces several new contributions to the representation and management of humans in an autonomous robotic system - Explores cognitive computing, robots and HRI, presenting a more in-depth understanding to make robots better for society - Gives a challenging approach to those several repercussions of cognitive computing and HRI in the actual global scenario
Human–Robot Interaction in Social Robotics explores important issues in designing a robot system that works with people in everyday environments. Edited by leading figures in the field of social robotics, it draws on contributions by researchers working on the Robovie project at the ATR Intelligent Robotics and Communication Laboratories, a world leader in humanoid interactive robotics. The book brings together, in one volume, technical and empirical research that was previously scattered throughout the literature. Taking a networked robot approach, the book examines how robots work in cooperation with ubiquitous sensors and people over telecommunication networks. It considers the use of social robots in daily life, grounding the work in field studies conducted at a school, train station, shopping mall, and science museum. Critical in the development of network robots, these usability studies allow researchers to discover real issues that need to be solved and to understand what kinds of services are possible. The book tackles key areas where development is needed, namely, in sensor networks for tracking humans and robots, humanoids that can work in everyday environments, and functions for interacting with people. It introduces a sensor network developed by the authors and discusses innovations in the Robovie humanoid, including several interactive behaviors and design policies. Exploring how humans interact with robots in daily life settings, this book offers valuable insight into how robots may be used in the future. The combination of engineering, empirical, and field studies provides readers with rich information to guide in developing practical interactive robots.
A thirteen-year-old girl wakes up in a future where human emotions are extinct and people rely on personal-assistant robots to navigate daily life. Imagine a future in which many human emotions are extinct, and “emotional masseuses” try to help people recover those lost sensations. Individuals rely on personal-assistant robots to navigate daily life. Students are taught not to think but to employ search programs. Companies protect their intellectual property by erasing the memory of their employees. And then imagine what it would feel like to be a sweet, smart thirteen-year-old girl from the twenty-first century who wakes from a cryogenically induced sleep into this strange world. This is the compelling story told by Carme Torras in this prize-winning science fiction novel. We meet Celia, brought back to life when a cure is found for her formerly terminal disease, and Lu, Celia's adoptive mother, protective but mystified by her new daughter. There is Leo, a bioengineer, who is developing a “creativity prosthesis” to augment humans' atrophied capacities, and the eccentric robotics mogul Dr. Craft. And there is Silvana, an emotional masseuse who reads old books to research the power of emotion. Silvana sees Celia as a living, breathing example of the emotions and feelings that are now out of reach for most people. Torras, a prominent roboticist, weaves provocative ethical issues into her story. What kind of robots do we want when robot companions become as common as personal computers are now? Is it the responsibility of researchers to design robots that make the human mind evolve in a certain way? An appendix provides readers with a list of ethics questions raised by the book.
Human-robot interaction (HRI) is the study of interactions between people (users) and robots. HRI is multidisciplinary with contributions from the fields of human-computer interaction, artificial intelligence, robotics, speech recognition, and social sciences (psychology, cognitive science, anthropology, and human factors). There has been a great deal of work done in the area of human-robot interaction to understand how a human interacts with a computer. However, there has been very little work done in understanding how people interact with robots. For robots becoming our friends, these studies will be required more and more.
This book covers the most attractive problem in robot control, dealing with the direct interaction between a robot and a dynamic environment, including the human-robot physical interaction. It provides comprehensive theoretical and experimental coverage of interaction control problems, starting from the mathematical modeling of robots interacting with complex dynamic environments, and proceeding to various concepts for interaction control design and implementation algorithms at different control layers. Focusing on the learning principle, it also shows the application of new and advanced learning algorithms for robotic contact tasks.The ultimate aim is to strike a good balance between the necessary theoretical framework and practical aspects of interactive robots.
The market demands for skills, knowledge and personalities have positioned robotics as an important field in both engineering and science. To meet these challenging - mands, robotics has already seen its success in automating many industrial tasks in factories. And, a new era will come for us to see a greater success of robotics in n- industrial environments. In anticipating a wider deployment of intelligent and auto- mous robots for tasks such as manufacturing, eldercare, homecare, edutainment, search and rescue, de-mining, surveillance, exploration, and security missions, it is necessary for us to push the frontier of robotics into a new dimension, in which motion and intelligence play equally important roles. After the success of the inaugural conference, the purpose of the Second Inter- tional Conference on Intelligent Robotics and Applications was to provide a venue where researchers, scientists, engineers and practitioners throughout the world could come together to present and discuss the latest achievement, future challenges and exciting applications of intelligent and autonomous robots. In particular, the emphasis of this year’s conference was on “robot intelligence for achieving digital manufact- ing and intelligent automations. ” This volume of Springer’s Lecture Notes in Artificial Intelligence and Lecture Notes in Computer Science contains accepted papers presented at ICIRA 2009, held in Singapore, December 16–18, 2009. On the basis of the reviews and recommendations by the international Program Committee members, we decided to accept 128 papers having technical novelty, out of 173 submissions received from different parts of the world.
Neural network control has been a research hotspot in academic fields due to the strong ability of computation. One of its wildly applied fields is robotics. In recent years, plenty of researchers have devised different types of dynamic neural network (DNN) to address complex control issues in robotics fields in reality. Redundant manipulators are no doubt indispensable devices in industrial production. There are various works on the redundancy resolution of redundant manipulators in performing a given task with the manipulator model information known. However, it becomes knotty for researchers to precisely control redundant manipulators with unknown model to complete a cyclic-motion generation CMG task, to some extent. It is worthwhile to investigate the data-driven scheme and the corresponding novel dynamic neural network (DNN), which exploits learning and control simultaneously. Therefore, it is of great significance to further research the special control features and solve challenging issues to improve control performance from several perspectives, such as accuracy, robustness, and solving speed.
Human–Robot Interaction in Social Robotics explores important issues in designing a robot system that works with people in everyday environments. Edited by leading figures in the field of social robotics, it draws on contributions by researchers working on the Robovie project at the ATR Intelligent Robotics and Communication Laboratories, a world leader in humanoid interactive robotics. The book brings together, in one volume, technical and empirical research that was previously scattered throughout the literature. Taking a networked robot approach, the book examines how robots work in cooperation with ubiquitous sensors and people over telecommunication networks. It considers the use of social robots in daily life, grounding the work in field studies conducted at a school, train station, shopping mall, and science museum. Critical in the development of network robots, these usability studies allow researchers to discover real issues that need to be solved and to understand what kinds of services are possible. The book tackles key areas where development is needed, namely, in sensor networks for tracking humans and robots, humanoids that can work in everyday environments, and functions for interacting with people. It introduces a sensor network developed by the authors and discusses innovations in the Robovie humanoid, including several interactive behaviors and design policies. Exploring how humans interact with robots in daily life settings, this book offers valuable insight into how robots may be used in the future. The combination of engineering, empirical, and field studies provides readers with rich information to guide in developing practical interactive robots.
Robots are predicted to play a role in many aspects of our lives in the future, affecting work, personal relationships, education, business, law, medicine and the arts. As they become increasingly intelligent, autonomous, and communicative, they will be able to function in ever more complex physical and social surroundings, transforming the practices, organizations, and societies in which they are embedded. This book presents the proceedings of the Robophilosophy 2018 conference, held in Vienna, Austria, from 14 to 7 February 2018. The third event in the Robophilosophy Conference Series, the conference was entitled Envisioning Robots in Society – Politics, Power, and Public Space. It focused on the societal, economic, and political issues related to social robotics. The book is divided into two parts and an Epilogue. Part I, entitled Keynotes, contains abstracts of the keynotes and two longer papers. Part II is divided into 7 subject sections containing 37 papers. Subjects covered include robots in public spaces; politics and law; work and business; military robotics; and policy. The book provides an overview of the questions, answers, and approaches that are currently at the heart of both academic and public discussions. The contributions collected here will be of interest to researchers and policy makers alike, as well as other stakeholders.