Download Free Network Reliability In Practice Book in PDF and EPUB Free Download. You can read online Network Reliability In Practice and write the review.

This book contains selected peer-reviewed papers that were presented at the Fourth International Symposium on Transportation Network Reliability (INSTR) Conference held at the University of Minnesota July 22-23, 2010. International scholars, from a variety of disciplines--engineering, economics, geography, planning and transportation—offer varying perspectives on modeling and analysis of the reliability of transportation networks in order to illustrate both vulnerability to day-to-day and unpredictability variability and risk in travel, and demonstrates strategies for addressing those issues. The scope of the chapters includes all aspects of analysis and design to improve network reliability, specifically user perception of unreliability of public transport, public policy and reliability of travel times, the valuation and economics of reliability, network reliability modeling and estimation, travel behavior and vehicle routing under uncertainty, and risk evaluation and management for transportation networks. The book combines new methodologies and state of the art practice to model and address questions of network unreliability, making it of interest to both academics in transportation and engineering as well as policy-makers and practitioners.
Over the last two centuries, the development of modern transportation has significantly transformed human life. The main theme of this book is to understand the complexity of transportation development and model the process of network growth including its determining factors, which may be topological, morphological, temporal, technological, economic, managerial, social or political. Using multidimensional concepts and methods, the authors develop a holistic framework to represent network growth as an open and complex process with models that demonstrate in a scientific way how numerous independent decisions made by entities such as travelers, property owners, developers, and public jurisdictions could result in a coherent network of facilities on the ground. Models are proposed from innovative perspectives including self-organization, degeneration, and sequential connection to interpret the evolutionary growth of transportation networks in explicit consideration of independent economic and regulatory initiatives. Employing these models, the authors survey a series of topics ranging from network hierarchy and topology to first mover advantage. The authors demonstrate, with a wide spectrum of empirical and theoretical evidence, that network growth follows a path that is not only logical in retrospect, but also predictable and manageable from a planning perspective. In the larger scheme of innovative transportation planning, this book provides a re-consideration of conventional planning practice and sets the stage for further development on the theory and practice of the next-generation, evolutionary planning approach in transportation, making it of interest to scholars and practitioners alike in the field of transportation .
This book reports on cutting-edge theories and methods for analyzing complex systems, such as transportation and communication networks and discusses multi-disciplinary approaches to dependability problems encountered when dealing with complex systems in practice. The book presents the most noteworthy methods and results discussed at the International Conference on Reliability and Statistics in Transportation and Communication (RelStat), which took place in Riga, Latvia on October 17 – 20, 2018. It spans a broad spectrum of topics, from mathematical models and design methodologies, to software engineering, data security and financial issues, as well as practical problems in technical systems, such as transportation and telecommunications, and in engineering education.
An oft-repeated adage among telecommunication providers goes, “There are ve things that matter: reliability, reliability, reliability, time to market, and cost. If you can’t do all ve, at least do the rst three. ” Yet, designing and operating reliable networks and services is a Herculean task. Building truly reliable components is unacceptably expensive, forcing us to c- struct reliable systems out of unreliable components. The resulting systems are inherently complex, consisting of many different kinds of components running a variety of different protocols that interact in subtle ways. Inter-networkssuch as the Internet span multiple regions of administrative control, from campus and cor- rate networks to Internet Service Providers, making good end-to-end performance a shared responsibility borne by sometimes uncooperative parties. Moreover, these networks consist not only of routers, but also lower-layer devices such as optical switches and higher-layer components such as rewalls and proxies. And, these components are highly con gurable, leaving ample room for operator error and buggy software. As if that were not dif cult enough, end users understandably care about the performance of their higher-level applications, which has a complicated relationship with the behavior of the underlying network. Despite these challenges, researchers and practitioners alike have made trem- dous strides in improving the reliability of modern networks and services.
With computers becoming embedded as controllers in everything from network servers to the routing of subway schedules to NASA missions, there is a critical need to ensure that systems continue to function even when a component fails. In this book, bestselling author Martin Shooman draws on his expertise in reliability engineering and software engineering to provide a complete and authoritative look at fault tolerant computing. He clearly explains all fundamentals, including how to use redundant elements in system design to ensure the reliability of computer systems and networks. Market: Systems and Networking Engineers, Computer Programmers, IT Professionals.
Reliability and Maintenance: Networks and Systems gives an up-to-date presentation of system and network reliability analysis as well as maintenance planning with a focus on applicable models. Balancing theory and practice, it presents state-of-the-art research in key areas of reliability and maintenance theory and includes numerous examples and exercises. Every chapter starts with theoretical foundations and basic models and leads to more sophisticated models and ongoing research. The first part of the book introduces structural reliability theory for binary coherent systems. Within the framework of these systems, the second part covers network reliability analysis. The third part presents simply structured maintenance policies that may help with the cost-optimal scheduling of preventive maintenance. Each part can be read independently of one another. Suitable for researchers, practitioners, and graduate students in engineering, operations research, computer science, and applied mathematics, this book offers a thorough guide to the mathematical modeling of reliability and maintenance. It supplies the necessary theoretical and practical details for readers to perform reliability analyses and apply maintenance policies in their organizations.
Unique in its approach, Models of Network Reliability: Analysis, Combinatorics, and Monte Carlo provides a brief introduction to Monte Carlo methods along with a concise exposition of reliability theory ideas. From there, the text investigates a collection of principal network reliability models, such as terminal connectivity for networks with unre
Practical tools for analyzing, calculating, and reporting availability, reliability, and maintainability metrics Engineers in the telecommunications industry must be able to quantify system reliability and availability metrics for use in service level agreements, system design decisions, and daily operations. Increasing system complexity and software dependence require new, more sophisticated tools for system modeling and metric calculation than those available in the current literature. Telecommunications System Reliability Engineering, Theory, and Practice provides a background in reliability engineering theory as well as detailed sections discussing applications to fiber optic networks (earth station and space segment), microwave networks (long-haul, cellular backhaul and mobile wireless), satellite networks (teleport and VSAT), power systems (generators, commercial power and battery systems), facilities management, and software/firmware. Programming techniques and examples for simulation of the approaches presented are discussed throughout the book. This powerful resource: Acts as a comprehensive reference and textbook for analysis and design of highly reliable and available telecommunications systems Bridges the fields of system reliability theory, telecommunications system engineering, and computer programming Translates abstract reliability theory concepts into practical tools and techniques for technical managers, engineers and students Provides telecommunication engineers with a holistic understanding of system reliability theory, telecommunications system engineering, and reliability/risk analysis Telecommunications System Reliability Engineering, Theory, and Practice is a must-have guide for telecommunications engineers or engineering students planning to work in the field of telecommunications Telecommunications System Reliability Engineering, Theory, and Practice is a must-have guide for telecommunications engineers or engineering students planning to work in the field of telecommunications.
This book is devoted to the probabilistic description of the behavior of a network in the process of random removal of its components (links, nodes) appearing as a result of technical failures, natural disasters or intentional attacks. It is focused on a practical approach to network reliability and resilience evaluation, based on applications of Monte Carlo methodology to numerical approximation of network combinatorial invariants, including so-called multidimensional destruction spectra. This allows to develop a probabilistic follow-up analysis of the network in the process of its gradual destruction, to identify most important network components and to develop efficient heuristic algorithms for network optimal design. Our methodology works with satisfactory accuracy and efficiency for most applications of reliability theory to real –life problems in networks.