Download Free Network Models In Population Biology Book in PDF and EPUB Free Download. You can read online Network Models In Population Biology and write the review.

This book is an outgrowth of one phase of an upper-division course on quantitative ecology, given each year for the past eight at Berkeley. I am most grateful to the students in that course and to many graduate students in the Berkeley Department of Zoology and Colleges of Engineering and Natural Resources whose spirited discussions inspired much of the book's content. I also am deeply grateful to those faculty colleagues with whom, at one time or another, I have shared courses or seminars in ecology or population biology, D.M. Auslander, L. Demetrius, G. Oster, O.H. Paris, F.A. Pitelka, A.M. Schultz, Y. Takahashi, D.B. Tyler, and P. Vogelhut, all of whom contributed substantially to the development of my thinking in those fields, to my Depart mental colleagues E. Polak and A.J. Thomasian, who guided me into the litera ture on numerical methods and stochastic processes, and to the graduate students who at one time or another have worked with me on population-biology projects, L.M. Brodnax, S-P. Chan, A. Elterman, G.C. Ferrell, D. Green, C. Hayashi, K-L. Lee, W.F. Martin Jr., D. May, J. Stamnes, G.E. Swanson, and I. Weeks, who, together, undoubtedly provided me with the greatest inspiration. I am indebted to the copy-editing and production staff of Springer-Verlag, especially to Ms. M. Muzeniek, for their diligence and skill, and to Mrs. Alice Peters, biomathematics editor, for her patience.
In this new century mankind faces ever more challenging environmental and publichealthproblems,suchaspollution,invasionbyexoticspecies,theem- gence of new diseases or the emergence of diseases into new regions (West Nile virus,SARS,Anthrax,etc.),andtheresurgenceofexistingdiseases(in?uenza, malaria, TB, HIV/AIDS, etc.). Mathematical models have been successfully used to study many biological, epidemiological and medical problems, and nonlinear and complex dynamics have been observed in all of those contexts. Mathematical studies have helped us not only to better understand these problems but also to ?nd solutions in some cases, such as the prediction and control of SARS outbreaks, understanding HIV infection, and the investi- tion of antibiotic-resistant infections in hospitals. Structuredpopulationmodelsdistinguishindividualsfromoneanother- cording to characteristics such as age, size, location, status, and movement, to determine the birth, growth and death rates, interaction with each other and with environment, infectivity, etc. The goal of structured population models is to understand how these characteristics a?ect the dynamics of these models and thus the outcomes and consequences of the biological and epidemiolo- cal processes. There is a very large and growing body of literature on these topics. This book deals with the recent and important advances in the study of structured population models in biology and epidemiology. There are six chapters in this book, written by leading researchers in these areas.
As the first comprehensive title on network biology, this book covers a wide range of subjects including scientific fundamentals (graphs, networks, etc) of network biology, construction and analysis of biological networks, methods for identifying crucial nodes in biological networks, link prediction, flow analysis, network dynamics, evolution, simulation and control, ecological networks, social networks, molecular and cellular networks, network pharmacology and network toxicology, big data analytics, and more.Across 12 parts and 26 chapters, with Matlab codes provided for most models and algorithms, this self-contained title provides an in-depth and complete insight on network biology. It is a valuable read for high-level undergraduates and postgraduates in the areas of biology, ecology, environmental sciences, medical science, computational science, applied mathematics, and social science.
Why do organisms become extremely abundant one year and then seem to disappear a few years later? Why do population outbreaks in particular species happen more or less regularly in certain locations, but only irregularly (or never at all) in other locations? Complex population dynamics have fascinated biologists for decades. By bringing together mathematical models, statistical analyses, and field experiments, this book offers a comprehensive new synthesis of the theory of population oscillations. Peter Turchin first reviews the conceptual tools that ecologists use to investigate population oscillations, introducing population modeling and the statistical analysis of time series data. He then provides an in-depth discussion of several case studies--including the larch budmoth, southern pine beetle, red grouse, voles and lemmings, snowshoe hare, and ungulates--to develop a new analysis of the mechanisms that drive population oscillations in nature. Through such work, the author argues, ecologists can develop general laws of population dynamics that will help turn ecology into a truly quantitative and predictive science. Complex Population Dynamics integrates theoretical and empirical studies into a major new synthesis of current knowledge about population dynamics. It is also a pioneering work that sets the course for ecology's future as a predictive science.
Mutualistic interactions among plants and animals have played a paramount role in shaping biodiversity. Yet the majority of studies on mutualistic interactions have involved only a few species, as opposed to broader mutual connections between communities of organisms. Mutualistic Networks is the first book to comprehensively explore this burgeoning field. Integrating different approaches, from the statistical description of network structures to the development of new analytical frameworks, Jordi Bascompte and Pedro Jordano describe the architecture of these mutualistic networks and show their importance for the robustness of biodiversity and the coevolutionary process. Making a case for why we should care about mutualisms and their complex networks, this book offers a new perspective on the study and synthesis of this growing area for ecologists and evolutionary biologists. It will serve as the standard reference for all future work on mutualistic interactions in biological communities.
This volume develops a unifying approach to population studies, emphasising the interplay between modelling and experimentation. Throughout, mathematicians and biologists are provided with a framework within which population dynamics can be fully explored and understood. Aspects of population dynamics covered include birth-death and logistic processes, competition and predator-prey relationships, chaos, reaction time-delays, fluctuating environments, spatial systems, velocities of spread, epidemics, and spatial branching structures. Both deterministic and stochastic models are considered. Whilst the more theoretically orientated sections will appeal to mathematical biologists, the material is presented so that readers with little mathematical expertise can bypass these without losing the main flow of the text.
This book demonstrates the application of network theory to the social organization of animals.
Mathematical Concepts and Methods in Modern Biology offers a quantitative framework for analyzing, predicting, and modulating the behavior of complex biological systems. The book presents important mathematical concepts, methods and tools in the context of essential questions raised in modern biology.Designed around the principles of project-based learning and problem-solving, the book considers biological topics such as neuronal networks, plant population growth, metabolic pathways, and phylogenetic tree reconstruction. The mathematical modeling tools brought to bear on these topics include Boolean and ordinary differential equations, projection matrices, agent-based modeling and several algebraic approaches. Heavy computation in some of the examples is eased by the use of freely available open-source software. - Features self-contained chapters with real biological research examples using freely available computational tools - Spans several mathematical techniques at basic to advanced levels - Offers broad perspective on the uses of algebraic geometry/polynomial algebra in molecular systems biology
A synthesis of contemporary analytical and modeling approaches in population ecology The book provides an overview of the key analytical approaches that are currently used in demographic, genetic, and spatial analyses in population ecology. The chapters present current problems, introduce advances in analytical methods and models, and demonstrate the applications of quantitative methods to ecological data. The book covers new tools for designing robust field studies; estimation of abundance and demographic rates; matrix population models and analyses of population dynamics; and current approaches for genetic and spatial analysis. Each chapter is illustrated by empirical examples based on real datasets, with a companion website that offers online exercises and examples of computer code in the R statistical software platform. Fills a niche for a book that emphasizes applied aspects of population analysis Covers many of the current methods being used to analyse population dynamics and structure Illustrates the application of specific analytical methods through worked examples based on real datasets Offers readers the opportunity to work through examples or adapt the routines to their own datasets using computer code in the R statistical platform Population Ecology in Practice is an excellent book for upper-level undergraduate and graduate students taking courses in population ecology or ecological statistics, as well as established researchers needing a desktop reference for contemporary methods used to develop robust population assessments.
This 2004 collection of essays deals with the foundation and historical development of population biology and its relationship to population genetics and population ecology on the one hand and to the rapidly growing fields of molecular quantitative genetics, genomics and bioinformatics on the other. Such an interdisciplinary treatment of population biology has never been attempted before. The volume is set in a historical context, but it has an up-to-date coverage of material in various related fields. The areas covered are the foundation of population biology, life history evolution and demography, density and frequency dependent selection, recent advances in quantitative genetics and bioinformatics, evolutionary case history of model organisms focusing on polymorphisms and selection, mating system evolution and evolution in the hybrid zones, and applied population biology including conservation, infectious diseases and human diversity. This is the third of three volumes published in honour of Richard Lewontin.