Download Free Network Models And Optimization Book in PDF and EPUB Free Download. You can read online Network Models And Optimization and write the review.

Network models are critical tools in business, management, science and industry. “Network Models and Optimization” presents an insightful, comprehensive, and up-to-date treatment of multiple objective genetic algorithms to network optimization problems in many disciplines, such as engineering, computer science, operations research, transportation, telecommunication, and manufacturing. The book extensively covers algorithms and applications, including shortest path problems, minimum cost flow problems, maximum flow problems, minimum spanning tree problems, traveling salesman and postman problems, location-allocation problems, project scheduling problems, multistage-based scheduling problems, logistics network problems, communication network problem, and network models in assembly line balancing problems, and airline fleet assignment problems. The book can be used both as a student textbook and as a professional reference for practitioners who use network optimization methods to model and solve problems.
Unique in that it focuses on formulation and case studies ratherthan solutions procedures covering applications for pure,generalized and integer networks, equivalent formulations plussuccessful techniques of network models. Every chapter contains asimple model which is expanded to handle more complicateddevelopments, a synopsis of existing applications, one or more casestudies, at least 20 exercises and invaluable references. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available upon request from the Wileyeditorial department.
Linear Network Optimization presents a thorough treatment of classical approaches to network problems such as shortest path, max-flow, assignment, transportation, and minimum cost flow problems.
This book covers the design and optimization of computer networks applying a rigorous optimization methodology, applicable to any network technology. It is organized into two parts. In Part 1 the reader will learn how to model network problems appearing in computer networks as optimization programs, and use optimization theory to give insights on them. Four problem types are addressed systematically – traffic routing, capacity dimensioning, congestion control and topology design. Part 2 targets the design of algorithms that solve network problems like the ones modeled in Part 1. Two main approaches are addressed – gradient-like algorithms inspiring distributed network protocols that dynamically adapt to the network, or cross-layer schemes that coordinate the cooperation among protocols; and those focusing on the design of heuristic algorithms for long term static network design and planning problems. Following a hands-on approach, the reader will have access to a large set of examples in real-life technologies like IP, wireless and optical networks. Implementations of models and algorithms will be available in the open-source Net2Plan tool from which the user will be able to see how the lessons learned take real form in algorithms, and reuse or execute them to obtain numerical solutions. An accompanying link to the author’s own Net2plan software enables readers to produce numerical solutions to a multitude of real-life problems in computer networks (www.net2plan.com).
In the past few decades, there has been a large amount of work on algorithms for linear network flow problems, special classes of network problems such as assignment problems (linear and quadratic), Steiner tree problem, topology network design and nonconvex cost network flow problems.Network optimization problems find numerous applications in transportation, in communication network design, in production and inventory planning, in facilities location and allocation, and in VLSI design.The purpose of this book is to cover a spectrum of recent developments in network optimization problems, from linear networks to general nonconvex network flow problems./a
The purpose of this book is to provide readers with an introduction to the very active field of integer programming and network models. The idea is to cover the main parts of the field without being too detailed or too technical. As a matter of fact, we found it somewhat surprising that most--especially newer---books are strongly algorithmically oriented. In contrast, the main emphasis of this book is on models rather than methods. This focus expresses our view that methods are tools to solve actual problems and not ends in themselves. As such, graduate (and with some omissions, undergraduate) students may find this book helpful in their studies as will practitioners who would like to get acquainted with a field or use this text as a refresher. This premise has resulted in a coverage that omits material that is standard fare in other books, whereas it covers topics that are only infrequently found elsewhere. There are some, yet relatively few, prerequisites for the reader. Most material that is required for the understanding of more than one chapter is presented in one of the four chapters of the introductory part, which reviews the main results in linear programming, the analysis of algorithms, graphs and networks, and dynamic programming, respectively. Readers who are familiar with the issues involved can safely skip that part. The three main parts of the book rely on intuitive reasoning and examples, whenever practical, instead of theorems and proofs.
This book offers a state-of-the-art introduction to the mathematical theory of supply chain networks, focusing on those described by partial differential equations. The authors discuss modeling of complex supply networks as well as their mathematical theory, explore modeling, simulation, and optimization of some of the discussed models, and present analytical and numerical results on optimization problems. Real-world examples are given to demonstrate the applicability of the presented approaches. Graduate students and researchers who are interested in the theory of supply chain networks described by partial differential equations will find this book useful. It can also be used in advanced graduate-level courses on modeling of physical phenomena as well as introductory courses on supply chain theory.
Combinatorial optimization is a fascinating topic. Combinatorial optimization problems arise in a wide variety of important fields such as transportation, telecommunications, computer networking, location, planning, distribution problems, etc. Important and significant results have been obtained on the theory, algorithms and applications over the last few decades. In combinatorial optimization, many network design problems can be generalized in a natural way by considering a related problem on a clustered graph, where the original problem's feasibility constraints are expressed in terms of the clusters, i.e., node sets instead of individual nodes. This class of problems is usually referred to as generalized network design problems (GNDPs) or generalized combinatorial optimization problems. The express purpose of this monograph is to describe a series of mathematical models, methods, propositions, algorithms developed in the last years on generalized network design problems in a unified manner. The book consists of seven chapters, where in addition to an introductory chapter, the following generalized network design problems are formulated and examined: the generalized minimum spanning tree problem, the generalized traveling salesman problem, the railway traveling salesman problem, the generalized vehicle routing problem, the generalized fixed-charge network design problem and the generalized minimum vertex-biconnected network problem. The book will be useful for researchers, practitioners, and graduate students in operations research, optimization, applied mathematics and computer science. Due to the substantial practical importance of some presented problems, researchers in other areas will find this book useful, too.
People are facing more and more NP-complete or NP-hard problems of a combinatorial nature and of a continuous nature in economic, military and management practice. There are two ways in which one can enhance the efficiency of searching for the solutions of these problems. The first is to improve the speed and memory capacity of hardware. We all have witnessed the computer industry's amazing achievements with hardware and software developments over the last twenty years. On one hand many computers, bought only a few years ago, are being sent to elementary schools for children to learn the ABC's of computing. On the other hand, with economic, scientific and military developments, it seems that the increase of intricacy and the size of newly arising problems have no end. We all realize then that the second way, to design good algorithms, will definitely compensate for the hardware limitations in the case of complicated problems. It is the collective and parallel computation property of artificial neural net works that has activated the enthusiasm of researchers in the field of computer science and applied mathematics. It is hard to say that artificial neural networks are solvers of the above-mentioned dilemma, but at least they throw some new light on the difficulties we face. We not only anticipate that there will be neural computers with intelligence but we also believe that the research results of artificial neural networks might lead to new algorithms on von Neumann's computers.
Introduction and basic building blocks. Adding costs to two echelon supply chains. Advanced modeling and expanding to multiple echelons. How to get industrial streng results. Case study wrap up.