Download Free Network Games Control And Optimization Book in PDF and EPUB Free Download. You can read online Network Games Control And Optimization and write the review.

This book constitutes the conference proceedings of the 10th International Conference on Network Games, Control and Optimization, NETGCOOP 2020, held in Cargèse, Corsica, France, in September 2021*.The 12 full papers and 16 short papers were carefully reviewed and selected from 44 submissions. The papers are organized in the following topical sections: ​game theory and iterative algorithms applied to wireless communication; stochastic models for network performance analysis; game theory in mobile and wireless networks; scheduling and resource allocation problems in networks; advance in game theory; social network; electrical network. * The conference was postponed to 2021 due to the COVID-19 pandemic.
This contributed volume offers a collection of papers presented at the 2016 Network Games, Control, and Optimization conference (NETGCOOP), held at the University of Avignon in France, November 23-25, 2016. These papers highlight the increasing importance of network control and optimization in many networking application domains, such as mobile and fixed access networks, computer networks, social networks, transportation networks, and, more recently, electricity grids and biological networks. Covering a wide variety of both theoretical and applied topics in the areas listed above, the authors explore several conceptual and algorithmic tools that are needed for efficient and robust control operation, performance optimization, and better understanding the relationships between entities that may be acting cooperatively or selfishly in uncertain and possibly adversarial environments. As such, this volume will be of interest to applied mathematicians, computer scientists, engineers, and researchers in other related fields.
This book constitutes the conference proceedings of the 10th International Conference on Network Games, Control and Optimization, NETGCOOP 2020, held in Cargèse, Corsica, France, in September 2021*. The 12 full papers and 16 short papers were carefully reviewed and selected from 44 submissions. The papers are organized in the following topical sections: game theory and iterative algorithms applied to wireless communication; stochastic models for network performance analysis; game theory in mobile and wireless networks; scheduling and resource allocation problems in networks; advance in game theory; social network; electrical network. * The conference was postponed to 2021 due to the COVID-19 pandemic.
This contributed volume offers a collection of papers presented at the 2018 Network Games, Control, and Optimization conference (NETGCOOP), held at the New York University Tandon School of Engineering in New York City, November 14-16, 2018. These papers highlight the increasing importance of network control and optimization in many networking application domains, such as mobile and fixed access networks, computer networks, social networks, transportation networks, and, more recently, electricity grids and biological networks. Covering a wide variety of both theoretical and applied topics in the areas listed above, the authors explore several conceptual and algorithmic tools that are needed for efficient and robust control operation, performance optimization, and better understanding the relationships between entities that may be acting cooperatively or selfishly in uncertain and possibly adversarial environments. As such, this volume will be of interest to applied mathematicians, computer scientists, engineers, and researchers in other related fields.
The topic of network control and optimization has been of increasing importance in many networking application domains, such as mobile and fixed access networks, computer networks, social networks and transportation networks These all require tools (both conceptual and algorithmic) for a better and more efficient control operation, for optimization of their performance, and or for a better understanding of the relationships between entities that may be cooperative or act selfishly, and in an uncertain and possibly adversarial environment The goal of this international forum is to bring together researchers from different areas with theoretical expertise in game theory, control, and optimization, and with applications in the domains listed above
The topic of network control and optimization has been of increasing importance in many networking application domains, such as mobile and fixed access networks, computer networks, social networks and transportation networks These all require tools (both conceptual and algorithmic) for a better and more efficient control operation, for optimization of their performance, and or for a better understanding of the relationships between entities that may be cooperative or act selfishly, and in an uncertain and possibly adversarial environment The goal of this international forum is to bring together researchers from different areas with theoretical expertise in game theory, control, and optimization, and with applications in the domains listed above.
Traditional network optimization focuses on a single control objective in a network populated by obedient users and limited dispersion of information. However, most of today's networks are large-scale with lack of access to centralized information, consist of users with diverse requirements, and are subject to dynamic changes. These factors naturally motivate a new distributed control paradigm, where the network infrastructure is kept simple and the network control functions are delegated to individual agents which make their decisions independently ("selfishly"). The interaction of multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. This monograph studies game theoretic models of resource allocation among selfish agents in networks. The first part of the monograph introduces fundamental game theoretic topics. Emphasis is given to the analysis of dynamics in game theoretic situations, which is crucial for design and control of networked systems. The second part of the monograph applies the game theoretic tools for the analysis of resource allocation in communication networks. We set up a general model of routing in wireline networks, emphasizing the congestion problems caused by delay and packet loss. In particular, we develop a systematic approach to characterizing the inefficiencies of network equilibria, and highlight the effect of autonomous service providers on network performance. We then turn to examining distributed power control in wireless networks. We show that the resulting Nash equilibria can be efficient if the degree of freedom given to end-users is properly designed. Table of Contents: Static Games and Solution Concepts / Game Theory Dynamics / Wireline Network Games / Wireless Network Games / Future Perspectives
Traditional network optimization focuses on a single control objective in a network populated by obedient users and limited dispersion of information. However, most of today's networks are large-scale with lack of access to centralized information, consist of users with diverse requirements, and are subject to dynamic changes. These factors naturally motivate a new distributed control paradigm, where the network infrastructure is kept simple and the network control functions are delegated to individual agents which make their decisions independently ("selfishly"). The interaction of multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. This monograph studies game theoretic models of resource allocation among selfish agents in networks. The first part of the monograph introduces fundamental game theoretic topics. Emphasis is given to the analysis of dynamics in game theoretic situations, which is crucial for design and control of networked systems. The second part of the monograph applies the game theoretic tools for the analysis of resource allocation in communication networks. We set up a general model of routing in wireline networks, emphasizing the congestion problems caused by delay and packet loss. In particular, we develop a systematic approach to characterizing the inefficiencies of network equilibria, and highlight the effect of autonomous service providers on network performance. We then turn to examining distributed power control in wireless networks. We show that the resulting Nash equilibria can be efficient if the degree of freedom given to end-users is properly designed. Table of Contents: Static Games and Solution Concepts / Game Theory Dynamics / Wireline Network Games / Wireless Network Games / Future Perspectives