Download Free Net Shape Technology In Aerospace Structures Book in PDF and EPUB Free Download. You can read online Net Shape Technology In Aerospace Structures and write the review.

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
The rapidly-expanding aerospace industry is a prime developer and user of advanced metallic and composite materials in its many products. This book concentrates on the manufacturing technology necessary to fabricate and assemble these materials into useful and effective structural components. Detailed chapters are dedicated to each key metal or alloy used in the industry, including aluminum, magnesium, beryllium, titanium, high strength steels, and superalloys. In addition the book deals with composites, adhesive bonding and presents the essentials of structural assembly. This book will be an important resource for all those involved in aerospace design and construction, materials science and engineering, as well as for metallurgists and those working in related sectors such as the automotive and mass transport industries. Flake Campbell Jr has over thirty seven years experience in the aerospace industry and is currently Senior Technical Fellow at the Boeing Phantom Works in Missouri, USA.* All major aerospace structural materials covered: metals and composites* Focus on details of manufacture and use* Author has huge experience in aerospace industry* A must-have book for materials engineers, design and structural engineers, metallurgical engineers and manufacturers for the aerospace industry
The ongoing development of military aerospace platforms requires continuous technology advances in order to provide the nation's war fighters with the desired advantage. Significant advances in the performance and efficiency of jet and rocket propulsion systems are strongly dependent on the development of lighter more durable high-temperature materials. Materials development has been significantly reduced in the United States since the early 1990s, when the Department of Defense (DOD), the military services, and industry had very active materials development activities to underpin the development of new propulsion systems. This resulted in significant improvements in all engine characteristics and established the United States in global propulsion technology. Many of the significant advances in aircraft and rocket propulsion have been enabled by improved materials and, materials manufacturing processes. To improve efficiency further, engine weight must be reduced while preserving thrust. Materials Needs and Research and Development Strategy for Future Military Aerospace Propulsion Systems examines whether current and planned U.S. efforts are sufficient to meet U.S. military needs while keeping the U.S. on the leading edge of propulsion technology. This report considers mechanisms for the timely insertion of materials in propulsion systems and how these mechanisms might be improved, and describes the general elements of research and development strategies to develop materials for future military aerospace propulsion systems. The conclusions and recommendations asserted in this report will enhance the efficiency, level of effort, and impact of DOD materials development activities.
The major objective of this book was to identify issues related to the introduction of new materials and the effects that advanced materials will have on the durability and technical risk of future civil aircraft throughout their service life. The committee investigated the new materials and structural concepts that are likely to be incorporated into next generation commercial aircraft and the factors influencing application decisions. Based on these predictions, the committee attempted to identify the design, characterization, monitoring, and maintenance issues that are critical for the introduction of advanced materials and structural concepts into future aircraft.
The major objective of this book was to identify issues related to the introduction of new materials and the effects that advanced materials will have on the durability and technical risk of future civil aircraft throughout their service life. The committee investigated the new materials and structural concepts that are likely to be incorporated into next generation commercial aircraft and the factors influencing application decisions. Based on these predictions, the committee attempted to identify the design, characterization, monitoring, and maintenance issues that are critical for the introduction of advanced materials and structural concepts into future aircraft.
Additive Manufacturing for the Aerospace Industry explores the design, processing, metallurgy and applications of additive manufacturing (AM) within the aerospace industry. The book's editors have assembled an international team of experts who discuss recent developments and the future prospects of additive manufacturing. The work includes a review of the advantages of AM over conventionally subtractive fabrication, including cost considerations. Microstructures and mechanical properties are also presented, along with examples of components fabricated by AM. Readers will find information on a broad range of materials and processes used in additive manufacturing. It is ideal reading for those in academia, government labs, component fabricators, and research institutes, but will also appeal to all sectors of the aerospace industry. - Provides information on a broad range of materials and processes used in additive manufacturing - Presents recent developments in the design and applications of additive manufacturing specific to the aerospace industry - Covers a wide array of materials for use in the additive manufacturing of aerospace parts - Discusses current standards in the area of aerospace AM parts