Download Free Necessary And Sufficient Conditions For Solving Cooperative Differential Games Book in PDF and EPUB Free Download. You can read online Necessary And Sufficient Conditions For Solving Cooperative Differential Games and write the review.

Game theory is the theory of social situations, and the majority of research into the topic focuses on how groups of people interact by developing formulas and algorithms to identify optimal strategies and to predict the outcome of interactions. Only fifty years old, it has already revolutionized economics and finance, and is spreading rapidly to a wide variety of fields. LQ Dynamic Optimization and Differential Games is an assessment of the state of the art in its field and the first modern book on linear-quadratic game theory, one of the most commonly used tools for modelling and analysing strategic decision making problems in economics and management. Linear quadratic dynamic models have a long tradition in economics, operations research and control engineering; and the author begins by describing the one-decision maker LQ dynamic optimization problem before introducing LQ differential games. Covers cooperative and non-cooperative scenarios, and treats the standard information structures (open-loop and feedback). Includes real-life economic examples to illustrate theoretical concepts and results. Presents problem formulations and sound mathematical problem analysis. Includes exercises and solutions, enabling use for self-study or as a course text. Supported by a website featuring solutions to exercises, further examples and computer code for numerical examples. LQ Dynamic Optimization and Differential Games offers a comprehensive introduction to the theory and practice of this extensively used class of economic models, and will appeal to applied mathematicians and econometricians as well as researchers and senior undergraduate/graduate students in economics, mathematics, engineering and management science.
This work addresses inverse dynamic games, which generalize the inverse problem of optimal control, and where the aim is to identify cost functions based on observed optimal trajectories. The identified cost functions can describe individual behavior in cooperative systems, e.g. human behavior in human-machine haptic shared control scenarios.
This book systematically studies the stochastic non-cooperative differential game theory of generalized linear Markov jump systems and its application in the field of finance and insurance. The book is an in-depth research book of the continuous time and discrete time linear quadratic stochastic differential game, in order to establish a relatively complete framework of dynamic non-cooperative differential game theory. It uses the method of dynamic programming principle and Riccati equation, and derives it into all kinds of existence conditions and calculating method of the equilibrium strategies of dynamic non-cooperative differential game. Based on the game theory method, this book studies the corresponding robust control problem, especially the existence condition and design method of the optimal robust control strategy. The book discusses the theoretical results and its applications in the risk control, option pricing, and the optimal investment problem in the field of finance and insurance, enriching the achievements of differential game research. This book can be used as a reference book for non-cooperative differential game study, for graduate students majored in economic management, science and engineering of institutions of higher learning.
The book focuses on Pareto optimality in cooperative games. Most of the existing works focus on the Pareto optimality of deterministic continuous-time systems or for the regular convex LQ case. To expand on the available literature, we explore the existence conditions of Pareto solutions in stochastic differential game for more general cases. In addition, the LQ Pareto game for stochastic singular systems, Pareto-based guaranteed cost control for uncertain mean-field stochastic systems, and the existence conditions of Pareto solutions in cooperative difference game are also studied in detail. Addressing Pareto optimality for more general cases and wider systems is one of the major features of the book, making it particularly suitable for readers who are interested in multi-objective optimal control. Accordingly, it offers a valuable asset for researchers, engineers, and graduate students in the fields of control theory and control engineering, economics, management science, mathematics, etc.
The classical optimal control theory deals with the determination of an optimal control that optimizes the criterion subjects to the dynamic constraint expressing the evolution of the system state under the influence of control variables. If this is extended to the case of multiple controllers (also called players) with different and sometimes conflicting optimization criteria (payoff function) it is possible to begin to explore differential games. Zero-sum differential games, also called differential games of pursuit, constitute the most developed part of differential games and are rigorously investigated. In this book, the full theory of differential games of pursuit with complete and partial information is developed. Numerous concrete pursuit-evasion games are solved (?life-line? games, simple pursuit games, etc.), and new time-consistent optimality principles in the n-person differential game theory are introduced and investigated.
Game theory is the theory of social situations, and the majority of research into the topic focuses on how groups of people interact by developing formulas and algorithms to identify optimal strategies and to predict the outcome of interactions. Only fifty years old, it has already revolutionized economics and finance, and is spreading rapidly to a wide variety of fields. LQ Dynamic Optimization and Differential Games is an assessment of the state of the art in its field and the first modern book on linear-quadratic game theory, one of the most commonly used tools for modelling and analysing strategic decision making problems in economics and management. Linear quadratic dynamic models have a long tradition in economics, operations research and control engineering; and the author begins by describing the one-decision maker LQ dynamic optimization problem before introducing LQ differential games. Covers cooperative and non-cooperative scenarios, and treats the standard information structures (open-loop and feedback). Includes real-life economic examples to illustrate theoretical concepts and results. Presents problem formulations and sound mathematical problem analysis. Includes exercises and solutions, enabling use for self-study or as a course text. Supported by a website featuring solutions to exercises, further examples and computer code for numerical examples. LQ Dynamic Optimization and Differential Games offers a comprehensive introduction to the theory and practice of this extensively used class of economic models, and will appeal to applied mathematicians and econometricians as well as researchers and senior undergraduate/graduate students in economics, mathematics, engineering and management science.
A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.
Game theory is a branch of modern applied mathematics that aims to analyze various problems of conflict between parties that have opposed, similar or simply different interests.Games are grouped into several classes according to some important features. In this volume zero-sum two-person games, strategic n-person games in normal form, cooperative games, games in extensive form with complete and incomplete information, differential pursuit games and differential cooperative n-person games are considered.
Differential Game Theory with Applications to Missiles and Autonomous Systems explains the use of differential game theory in autonomous guidance and control systems. The book begins with an introduction to the basic principles before considering optimum control and game theory. Two-party and multi-party game theory and guidance are then covered and, finally, the theory is demonstrated through simulation examples and models and the simulation results are discussed. Recent developments in the area of guidance and autonomous systems are also presented. Key features: Presents new developments and how they relate to established control systems knowledge. Demonstrates the theory through simulation examples and models. Covers two-party and multi-party game theory and guidance. Accompanied by a website hosting MATLAB® code. The book is essential reading for researchers and practitioners in the aerospace and defence industries as well as graduate students in aerospace engineering.
This textbook provides a comprehensive overview of noncooperative and cooperative dynamic games involving uncertain parameter values, with the stochastic process being described by an event tree. Primarily intended for graduate students of economics, management science and engineering, the book is self-contained, as it defines and illustrates all relevant concepts originally introduced in static games before extending them to a dynamic framework. It subsequently addresses the sustainability of cooperative contracts over time and introduces a range of mechanisms to help avoid such agreements breaking down before reaching maturity. To illustrate the concepts discussed, the book provides various examples of how dynamic games played over event trees can be applied to environmental economics, management science, and engineering.