Download Free Nchrp Synthesis 402 Book in PDF and EPUB Free Download. You can read online Nchrp Synthesis 402 and write the review.

TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 402: Construction Manager-at-Risk Project Delivery for Highway Programs explores current methods in which state departments of transportation and other public engineering agencies are applying construction manager-at-risk (CMR) project delivery to their construction projects. CMR project delivery is an integrated team approach to the planning, design, and construction of a highway project, to help control schedule and budget, and to help ensure quality for the project owner. The team consists of the owner; the designer, who might be an in-house engineer; and the at-risk construction manager. The goal of this project delivery method is to engage at-risk construction expertise early in the design process to enhance constructability, manage risk, and facilitate concurrent execution of design and construction without the owner relinquishing control over the details of design as it would in a design-build project.
"TRB's National Cooperative Highway Research Program (NCHRP) Report 753: A Pre-Event Recovery Planning Guide for Transportation is designed to help transportation owners and operators in their efforts to plan for recovery prior to the occurrence of an event that impacts transportation systems. The guide includes tools and resources to assist in both pre-planning for recovery and implementing recovery after an event. NCHRP Report 753 is intended to provide a single resource for understanding the principles and processes to be used for pre-event recovery planning for transportation infrastructure. In addition to the principles and processes, the guide contains checklists, decision support tools, and resources to help support pre-event recovery planning."--Publisher description.
TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 305: Interaction Between Roadways and Wildlife Ecology summarizes existing information related to roadway planning, design, construction, operation, and maintenance practices being used successfully and unsuccessfully, nationally and internationally, to accommodate wildlife ecology given the challenging background of rapid growth and diminishing natural resources.
TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 319: Bridge Deck Joint Performance presents the state of the practice on commonly used expansion joint systems in bridges by summarizing performance data for each system type and by providing examples of selection criteria and design guidelines.
TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 338: Thin and Ultra-Thin Whitetopping summarizes available information to document how state departments of transportation and others are currently using thin and ultra-thin whitetopping overlays among various pavement rehabilitation alternatives. The report covers all stages of the proper application of whitetopping overlays, including project selection, design, materials selection, construction, maintenance, and eventual rehabilitation or replacement.
Risk management is a very important process in the context of global and organizational sustainability. It helps organizations prepare for organizational risks and reduce costs before they occur. Risk management contributes to the achievement of organizational objectives and to the development of organizational benefits and risk opportunities. As such, this book identifies strategic challenges for risk management assessment and practices, examines potential factors that affect business growth, and offers new opportunities for enterprises. It includes fifteen chapters that cover such topics as sustainable management in the construction industry, risk communication in the age of COVID, managing tax risks in mergers and acquisitions, corporate governance, and much more.
In the recent past, new materials, laboratory and in-situ testing methods and construction techniques have been introduced. In addition, modern computational techniques such as the finite element method enable the utilization of sophisticated constitutive models for realistic model-based predictions of the response of pavements. The 7th RILEM International Conference on Cracking of Pavements provided an international forum for the exchange of ideas, information and knowledge amongst experts involved in computational analysis, material production, experimental characterization, design and construction of pavements. All submitted contributions were subjected to an exhaustive refereed peer review procedure by the Scientific Committee, the Editors and a large group of international experts in the topic. On the basis of their recommendations, 129 contributions which best suited the goals and the objectives of the Conference were chosen for presentation and inclusion in the Proceedings. The strong message that emanates from the accepted contributions is that, by accounting for the idiosyncrasies of the response of pavement engineering materials, modern sophisticated constitutive models in combination with new experimental material characterization and construction techniques provide a powerful arsenal for understanding and designing against the mechanisms and the processes causing cracking and pavement response deterioration. As such they enable the adoption of truly "mechanistic" design methodologies. The papers represent the following topics: Laboratory evaluation of asphalt concrete cracking potential; Pavement cracking detection; Field investigation of pavement cracking; Pavement cracking modeling response, crack analysis and damage prediction; Performance of concrete pavements and white toppings; Fatigue cracking and damage characterization of asphalt concrete; Evaluation of the effectiveness of asphalt concrete modification; Crack growth parameters and mechanisms; Evaluation, quantification and modeling of asphalt healing properties; Reinforcement and interlayer systems for crack mitigation; Thermal and low temperature cracking of pavements; and Cracking propensity of WMA and recycled asphalts.