Download Free Navigation Of Autonomous Marine Robots Book in PDF and EPUB Free Download. You can read online Navigation Of Autonomous Marine Robots and write the review.

Thomas Glotzbach spotlights that navigation within marine robotics can benefit from cooperative teams in a way that justifies the increased effort to operate several vehicles at once. He features discussions of different scenarios, modeling of systems, and estimation algorithms for comparable situations. The chapter on the used methodologies may allow a reader with only basic knowledge in control theory to obtain deeper insight in advanced concepts such as observability and state estimation, even without any background in marine robotics.
Robotic marine vessels can be used for a wide range of purposes, including defence, marine science, offshore energy and hydrographic surveys, and environmental surveys and protection. Such vessels need to meet a variety of criteria: they must be able to operate in salt water, and to communicate and be controlled over large distances, even when submerged or in inclement weather. Further challenges include 3D navigation of individual vehicles, groups or squadrons.
This book reports on findings at the intersection between two related fields, namely coastal hydrography and marine robotics. On one side, it shows how the exploration of the ocean can be performed by autonomous underwater vehicles; on the other side, it shows how some methods from hydrography can be implemented in the localization and navigation of such vehicles, e.g. for target identification or path finding. Partially based on contributions presented at the conference Quantitative Monitoring of Underwater Environment, MOQESM, held on October 11-12, 2016, Brest, France, this book includes carefully revised and extended chapters presented at the conference, together with original papers not related to the event. All in all, it provides readers with a snapshot of current methods for sonar track registration, multi-vehicles control, collective exploration of underwater environments, optimization of propulsion systems, among others. More than that, the book is aimed as source of inspiration and tool to promote further discussions and collaboration between hydrographers, robotic specialists and other related communities.
The presence of mobile robots in diverse scenarios is considerably increasing to perform a variety of tasks. Among them, many developments have occurred in the fields of ground, underwater, and flying robotics. Independent of the environment where they move, navigation is a fundamental ability of mobile robots so that they can autonomously complete high-level tasks. This problem can be efficiently addressed through the following actions: First, it is necessary to perceive the environment in which the robot has to move, and extract some relevant information (mapping problem). Second, the robot must be able to estimate its position and orientation within this environment (localization problem). With this information, a trajectory toward the target points must be planned (path planning), and the vehicle must be reactively guided along this trajectory considering either possible changes or interactions with the environment or with the user (control). Given this information, this book introduces current frameworks in these fields (mapping, localization, path planning, and control) and, in general, approaches to any problem related to the navigation of mobile robots, such as odometry, exploration, obstacle avoidance, and simulation.
Unmanned marine vehicles (UMVs) include autonomous underwater vehicles, remotely operated vehicles, semi-submersibles and unmanned surface craft. Considerable importance is being placed on the design and development of such vehicles, as they provide cost-effective solutions to a number of littoral, coastal and offshore problems. This book highlights the advanced technology that is evolving to meet the challenges being posed in this exciting and growing area of research.
It is at least two decades since the conventional robotic manipulators have become a common manufacturing tool for different industries, from automotive to pharmaceutical. The proven benefits of utilizing robotic manipulators for manufacturing in different industries motivated scientists and researchers to try to extend the applications of robots to many other areas by inventing several new types of robots other than conventional manipulators. The new types of robots can be categorized in two groups; redundant (and hyper-redundant) manipulators, and mobile (ground, marine, and aerial) robots. These groups of robots, known as advanced robots, have more freedom for their mobility, which allows them to do tasks that the conventional manipulators cannot do. Engineers have taken advantage of the extra mobility of the advanced robots to make them work in constrained environments, ranging from limited joint motions for redundant (or hyper-redundant) manipulators to obstacles in the way of mobile (ground, marine, and aerial) robots. Since these constraints usually depend on the work environment, they are variable. Engineers have had to invent methods to allow the robots to deal with a variety of constraints automatically. A robot that is equipped with those methods is called an Autonomous Robot. Autonomous Robots: Kinematics, Path Planning, and Control covers the kinematics and dynamic modeling/analysis of Autonomous Robots, as well as the methods suitable for their control. The text is suitable for mechanical and electrical engineers who want to familiarize themselves with methods of modeling/analysis/control that have been proven efficient through research.
Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required. Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.
A practical treatment of short-range radar processing for reliable object detection at ground level.
Autonomous underwater vehicles (AUVs) are emerging as a promising solution to help us explore and understand the ocean. The global market for AUVs is predicted to grow from 638 million dollars in 2020 to 1,638 million dollars by 2025 – a compound annual growth rate of 20.8 percent. To make AUVs suitable for a wider range of application-specific missions, it is necessary to deploy multiple AUVs to cooperatively perform the localization, tracking and formation tasks. However, weak underwater acoustic communication and the model uncertainty of AUVs make achieving this challenging. This book presents cutting-edge results regarding localization, tracking and formation for AUVs, highlighting the latest research on commonly encountered AUV systems. It also showcases several joint localization and tracking solutions for AUVs. Lastly, it discusses future research directions and provides guidance on the design of future localization, tracking and formation schemes for AUVs. Representing a substantial contribution to nonlinear system theory, robotic control theory, and underwater acoustic communication system, this book will appeal to university researchers, scientists, engineers, and graduate students in control theory and control engineering who wish to learn about the core principles, methods, algorithms, and applications of AUVs. Moreover, the practical localization, tracking and formation schemes presented provide guidance on exploring the ocean. The book is intended for those with an understanding of nonlinear system theory, robotic control theory, and underwater acoustic communication systems.
Robotic Sailing 2017. This book contains the peer-reviewed papers presented at the 10th International Robotic Sailing Conference which was organized in conjunction with the 10th World Robotic Sailing Championship held in Horten, Norway the 4th-9th of September 2017. The seven papers cover topics of interest for autonomous robotic sailing which represents some of the most challenging research and development areas. The book is divided into two parts. The first part contains papers which focus on the design of sails and software for the assessment and predication of sailboat performance as well as software platforms and middleware for sailboat competition and research. The second part includes algorithms and strategies for navigation and collision avoidance on local, mid- and long range. The differences in approach in the included papers show that robotic sailing is still an emerging cross-disciplinary science. The multitude of suggestions to the specific problems of prediction and simulation of sailboats as well as the challenges of route planning, anti-grounding and collision avoidance are good indicators of science in its infancy. Hence, we may expect the future to hold great advances for robotic sailing.