Download Free Natures Nanostructures Book in PDF and EPUB Free Download. You can read online Natures Nanostructures and write the review.

Natural nanomaterials and nanotechnologies are all around us, which inevitably leads to these questions: What are these natural nanomaterials made of? Where can we find them? What can they do? Answering these questions will facilitate new and environmentally friendly ways of creating and manipulating nanoscale materials for the next generation of new technologies. A truly multidisciplinary resource, this book brings together studies from astronomy, physics, chemistry, materials science, engineering, geology and geophysics, environmental science, agricultural science, entomology, molecular biology, and health and provides an invaluable resource for learning how various scientists approach similar problems.
A carefully developed textbook focusing on the fundamental principles of nanoscale science and nanotechnology.
This volume focuses on the fundamentals and advancements in micro and nanomanufacturing technologies applied in the biomedical and biochemical domain. The contents of this volume provide comprehensive coverage of the physical principles of advanced manufacturing technologies and the know-how of their applications in the fabrication of biomedical devices and systems. The book begins by documenting the journey of miniaturization and micro-and nano-fabrication. It then delves into the fundamentals of various advanced technologies such as micro-wire moulding, 3D printing, lithography, imprinting, direct laser machining, and laser-induced plasma-assisted machining. It also covers laser-based technologies which are a promising option due to their flexibility, ease in control and application, high precision, and availability. These technologies can be employed to process several materials such as glass, polymers: polycarbonate, polydimethylsiloxane, polymethylmethacrylate, and metals such as stainless steel, which are commonly used in the fabrication of biomedical devices, such as microfluidic technology, optical and fiber-optic sensors, and electro-chemical bio-sensors. It also discusses advancements in various MEMS/NEMS based technologies and their applications in energy conversion and storage devices. The chapters are written by experts from the fields of micro- and nano-manufacturing, materials engineering, nano-biotechnology, and end-users such as clinicians, engineers, academicians of interdisciplinary background. This book will be a useful guide for academia and industry alike.
Nanostructures for the Engineering of Cells: Tissues and Organs showcases recent advances in pharmaceutical nanotechnology, with particular emphasis on tissue engineering, organ and cell applications. The book provides an up-to-date overview of organ targeting and cell targeting using nanotechnology. In addition, tissue engineering applications, such as skin regeneration are also discussed. Written by a diverse range of international academics, this book is a valuable research resource for researchers working in the biomaterials, medical and pharmaceutical industries. - Explains how nanomaterials regulate different cell behavior and function as a carrier for different biomolecules - Shows how nanobiomaterials and nanobiodevices are used in a range of treatment areas, such as skin tissue, wound healing and bone regeneration - Discusses nanomaterial preparation strategies for pharmaceutical application and regenerative medicine
This book explores the interactions between nanomaterials/nanoparticles and plants and unveils potential applications. The chapters emphasize the implications of nanoparticles in cross-discipline approaches, including agricultural science, plant physiology, plant biotechnology, material science, environmental science, food chemistry, biomedical science, etc. It presents recent advances in experimental and theoretical studies and gives in-depth insights into the interaction between nanoparticles and plant cells. In addition, it discusses the potential applications and concerns of nanoparticles comprehensively. The research field of plant nanotechnology has great potential within plant sciences and agriculture and the related research is getting increased at present. The study of plant nanotechnology receives an advantage from the great progress of nanotechnology in biomedical sciences particularly the well-development of a variety of biocompatible nanoparticles (NPs) and advanced analytical techniques. Nowadays, although some NPs have been applied in the studies of plant and agronomic sciences, the knowledge regarding physiology and underlying mechanisms within the plant cell remains limited. This book offers a critical reference for students, teachers, professionals, and a wide array of researchers in plant science, plant physiology, plant biotechnology, material science, environmental science, food chemistry, nanotechnology, and biomedical science. It could also benefit the related field of plant nanotechnology for designing and organizing future research.
Nano-Enabled Agrochemicals in Agriculture presents a targeted overview of the safe implementation of nanotechnologies within agricultural and horticultural settings, with the purpose of achieving enhanced production while maintaining ecological integrity. The growing global request for agricultural crops and products requires high standards of quality and safety, which has stimulated the search for new technologies that preserve their quality and delay their decomposition. Nanotechnology may boost plant production by improving nutrient uptake/use efficiency with nanoformulations of fertilizers and agrochemicals for plant enhancement, detection and treatment of diseases, and host-parasite interactions at the molecular level using nanosensors. It also may improve plant disease diagnostics, removal of contaminants from soil and water, postharvest management of vegetables and flowers, and reclamation of salt-affected soils. Although the markets for nanoproducts and nanoformulations continue to increase, there are also growing concerns regarding the fate and behavior of nanomaterials in environmental systems. Exploring important topics related to nanotechnology and nanomaterials, the book includes the use of nanochemicals in insect pest management, as nanofungicides, nanoherbicides, micronutrient supply, and nanosensors to monitor crop and soil health conditions, from detection of agrochemicals to their slow release of agrochemicals, and their impact on related environs. This book will serve as an excellent resource for a wide range of plant scientists who have concerns about nanomaterial interactions with terrestrial and aquatic plants. - Focuses on emerging important topics related to nanotechnology and nanomaterials on agricultural systems - Emphasizes new applications of nanomaterials in the agricultural sciences, from fertilizers to irrigation systems - Addresses concerns about nanomaterial interactions with terrestrial and aquatic plants
Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.
Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization explores the nanoparticles and architecture of nanostructured materials being used today in a comprehensive, detailed manner. This book focuses primarily on the characterization, properties and synthesis of nanoscale materials, and is divided into three major parts. This is a valuable reference for materials scientists, and chemical and mechanical engineers working in R&D and academia, who want to learn more about how nanoparticles and nanomaterials are characterized and engineered. Part one covers nanoparticles formation, self-assembly in the architecture nanostructures, types and classifications of nanoparticles, and signature physical and chemical properties, toxicity and regulations. Part two presents different ways to form nanometer particles, including bottom-up and top-down approaches, the classical and non-classical theories of nanoparticles formation and self-assembly, surface functionalization and other surface treatments to allow practical use. Part three covers characterization of nanoparticles and nanostructured materials, including the determination of size and shape, in addition to atomic and electronic structures and other important properties. - Includes new physical and chemical techniques for the synthesis of nanoparticles and architecture nanostructures - Features an in-depth treatment of nanoparticles and nanostructures, including their characterization and chemical and physical properties - Explores the unusual properties of materials that are developed by modifying their shape and composition and by manipulating the arrangement of atoms and molecules - Explains important techniques for the synthesis, fabrication and the characterization of complex nano-architectures
The Advanced Study Institute on Synthesis, Functional Properties and Applications of Nanostructures, held at the Knossos Royal Village, Heraklion, Crete, Greece, July 26, 2002 - August 4, 2002, successfully reviewed the state-of-the-art of nanostructures and nanotechnology. It was concluded that Nanotechnology is widely agreed to be the research focus that will lead to the next generation of breakthroughs in science and engineering. There are three cornerstones to the expectation that Nanotechnology will yield revolutionary advances in understanding and application: • Breakthroughs in properties that arise from materials fabricated from the nanoscale. • Synergistic behavior that arise from the combination of disparate types of materials (soft vs. hard, organic vs. inorganic, chemical vs. biological vs. solid state) at the nanoscale. • Exploitation of natural (e.g. chemical and biological) assembly mechanisms that can accomplish structural control at the nanoscale. It is expected that this will lead to paradigms for assembling bio-inspired functional systems that accomplish desirable properties that are either unavailable or prohibitively expensive using top-down approaches.
This book embodies the potentials of nanobiotechnology-based water treatment techniques to provide a solid understanding of the subjects. Starting with a refresher of the basic conventional technologies which are now been integrated with nanomaterials for an efficient, viable, and eco-friendly treatment of contaminated water. The book covers various physical, chemical, and hybrid methods of nanobiomaterial synthesis and their fabrication for characterizing existing techniques. The book gives special attention to those nanotechnology-based approaches that promise easier, faster, and cheaper processes in contaminants monitoring and their treatment. Several case studies explain in an easy to understand format how employing nanobiomaterials as an indicator and analytical tool will enable students to learn about cleaning up the environment.