Download Free Natural Quasicrystals Book in PDF and EPUB Free Download. You can read online Natural Quasicrystals and write the review.

This book describes the discovery of quasicrystals (icosahedral and decagonal) in an extraterrestrial rock from the Koryak Mountains of Far Eastern Russia. After a decade-long search for a natural quasicrystal, this discovery opened a new avenue in mineralogy and crystallography that could lead to further discoveries in geoscience, astronomy, condensed matter physics, and materials engineering. For the first time, minerals have been discovered that violate the symmetry restrictions of conventional crystallography. The natural occurrence of such crystals was unexpected, involving previously unknown processes. The fact that the quasicrystals were found in a meteorite formed in the earliest moments of the solar system means these processes have been active for over 4.5 billion years and have influenced the composition of the first objects to condense around the Sun. Finding quasicrystals formed in these extreme environments also informed the longstanding debate concerning the stability and robustness of quasicrystals. Recent shock experiments lend support to the hypothesis that the extraterrestrial quasicrystals formed as a result of hypervelocity impacts between objects in the early Solar system, and that they are probably less rare in the Milky Way.
This book describes the discovery of quasicrystals (icosahedral and decagonal) in an extraterrestrial rock from the Koryak Mountains of Far Eastern Russia. After a decade-long search for a natural quasicrystal, this discovery opened a new avenue in mineralogy and crystallography that could lead to further discoveries in geoscience, astronomy, condensed matter physics, and materials engineering. For the first time, minerals have been discovered that violate the symmetry restrictions of conventional crystallography. The natural occurrence of such crystals was unexpected, involving previously unknown processes. The fact that the quasicrystals were found in a meteorite formed in the earliest moments of the solar system means these processes have been active for over 4.5 billion years and have influenced the composition of the first objects to condense around the Sun. Finding quasicrystals formed in these extreme environments also informed the longstanding debate concerning the stability and robustness of quasicrystals. Recent shock experiments lend support to the hypothesis that the extraterrestrial quasicrystals formed as a result of hypervelocity impacts between objects in the early Solar system, and that they are probably less rare in the Milky Way.
*Shortlisted for the 2019 Royal Society Insight Investment Science Book Prize* One of the most fascinating scientific detective stories of the last fifty years, an exciting quest for a new form of matter. “A riveting tale of derring-do” (Nature), this book reads like James Gleick’s Chaos combined with an Indiana Jones adventure. When leading Princeton physicist Paul Steinhardt began working in the 1980s, scientists thought they knew all the conceivable forms of matter. The Second Kind of Impossible is the story of Steinhardt’s thirty-five-year-long quest to challenge conventional wisdom. It begins with a curious geometric pattern that inspires two theoretical physicists to propose a radically new type of matter—one that raises the possibility of new materials with never before seen properties, but that violates laws set in stone for centuries. Steinhardt dubs this new form of matter “quasicrystal.” The rest of the scientific community calls it simply impossible. The Second Kind of Impossible captures Steinhardt’s scientific odyssey as it unfolds over decades, first to prove viability, and then to pursue his wildest conjecture—that nature made quasicrystals long before humans discovered them. Along the way, his team encounters clandestine collectors, corrupt scientists, secret diaries, international smugglers, and KGB agents. Their quest culminates in a daring expedition to a distant corner of the Earth, in pursuit of tiny fragments of a meteorite forged at the birth of the solar system. Steinhardt’s discoveries chart a new direction in science. They not only change our ideas about patterns and matter, but also reveal new truths about the processes that shaped our solar system. The underlying science is important, simple, and beautiful—and Steinhardt’s firsthand account is “packed with discovery, disappointment, exhilaration, and persistence...This book is a front-row seat to history as it is made” (Nature).
From tilings to quasicrystal structures and from surfaces to the n-dimensional approach, this book gives a full, self-contained in-depth description of the crystallography of quasicrystals. It aims not only at conveying the concepts and a precise picture of the structures of quasicrystals, but it also enables the interested reader to enter the field of quasicrystal structure analysis. Going beyond metallic quasicrystals, it also describes the new, dynamically growing field of photonic quasicrystals. The readership will be graduate students and researchers in crystallography, solid-state physics, materials science, solid- state chemistry and applied mathematics.
promoting the very notion of quasiperiodic order, and to spur its physical implications and technological capabilities. It, therefore, explores the fundamental aspects of intermetallic, photonic, and phononic quasicrystals, as well as soft-matter quasicrystals, including their intrinsic physical and structural properties. In addition, it thoroughly discusses experimental data and related theoretical approaches to explain them, extending the standard treatment given in most current solid state physics literature. It also explores exciting applications in new technological devices of quasiperiodically ordered systems, including multilayered quasiperiodic systems, along with 2D and 3D designs, whilst outlining new frontiers in quasicrystals research. This book can be used as a reader-friendly introductory text for graduate students, in addition to senior scientists and researchers coming from the fields of physics, chemistry, materials science, and engineering. Key features: • Provides an updated and detailed introduction to the interdisciplinary field of quasicrystals in a tutorial style, considering both fundamental aspects and additional freedom degrees provided by designs based on quasiperiodically ordered materials. • Includes 50 fully worked out exercises with detailed solutions, motivating, and illustrating the different concepts and notions to provide readers with further learning opportunities. • Presents a complete compendium of the current state of the art knowledge of quasicrystalline matter, and outlines future next generation materials based on quasiperiodically ordered designs for their potential use in useful technological devices. Dr. Enrique Maciá-Barber is Professor of condensed matter physics at the Universidad Complutense de Madrid. His research interests include the thermoelectric properties of quasicrystals and DNA biophysics. In 2010 he received the RSEF- BBVA Foundation Excellence Physics Teaching Award. His book Aperiodic Structures in Condensed Matter: Fundamentals and Applications (CRC Press, Boca-Raton, 2009) is one of the Top Selling Physics Books according to YBP Library Services.
This volume celebrates mineral sciences and what are considered the most important progresses and breakthroughs in this discipline. Authoritative authors, who, in most cases, are the direct discoverers recount the steps of their research, which represent landmark developments of mineralogy and mineralogical crystallography.
This book provides an interdisciplinary guide to quasicrystals, the 2011 Nobel Prize in Chemistry winning topic, by presenting an up-to-date and detailed introduction to the many fundamental aspects and applications of quasicrystals science. It reviews the most characteristic features of the peculiar geometric order underlying their structure and their reported intrinsic physical properties, along with their potential for specific applications. The role of quasiperiodic order in science and technology is also examined by focusing on the new design capabilities provided by this novel ordering of matter. This book is specifically devoted to promoting the very notion of quasiperiodic order, and to spur its physical implications and technological capabilities. It, therefore, explores the fundamental aspects of intermetallic, photonic, and phononic quasicrystals, as well as soft-matter quasicrystals, including their intrinsic physical and structural properties. In addition, it thoroughly discusses experimental data and related theoretical approaches to explain them, extending the standard treatment given in most current solid state physics literature. It also explores exciting applications in new technological devices of quasiperiodically ordered systems, including multilayered quasiperiodic systems, along with 2D and 3D designs, whilst outlining new frontiers in quasicrystals research. This book can be used as a reader-friendly introductory text for graduate students, in addition to senior scientists and researchers coming from the fields of physics, chemistry, materials science, and engineering. Key features: • Provides an updated and detailed introduction to the interdisciplinary field of quasicrystals in a tutorial style, considering both fundamental aspects and additional freedom degrees provided by designs based on quasiperiodically ordered materials. • Includes 50 fully worked out exercises with detailed solutions, motivating, and illustrating the different concepts and notions to provide readers with further learning opportunities. • Presents a complete compendium of the current state of the art knowledge of quasicrystalline matter, and outlines future next generation materials based on quasiperiodically ordered designs for their potential use in useful technological devices. Dr. Enrique Maciá-Barber is Professor of condensed matter physics at the Universidad Complutense de Madrid. His research interests include the thermoelectric properties of quasicrystals and DNA biophysics. In 2010 he received the RSEF- BBVA Foundation Excellence Physics Teaching Award. His book Aperiodic Structures in Condensed Matter: Fundamentals and Applications (CRC Press, Boca-Raton, 2009) is one of the Top Selling Physics Books according to YBP Library Services.
Over the past several decades, a This book deals with the characterisation of the structure, the structure determination and the study of the physical properties, especially dynamical and electronic properties of aperiodic crystals. The treatment is based on a description in a space with more dimensions than three, the so-called superspace. This allows us to generalise the standard crystallography and to look differently at the dynamics. The three main classes of aperiodic crystals, modulated phases, incommensurate composites and quasicrystals are treated from a unified point of view, which stresses similarities of the various systems. The book assumes as a prerequisite a knowledge of the fundamental techniques of crystallography and the theory of condensed matter, and covers the literature at the forefront of the field. Since the first edition of this book in 2007, the field of aperiodic crystals has developed considerably, with the discovery of new materials and new structures. Progress has been made in structure determination, in the interpretation and understanding of the structural characteristics and in the calculation of electrons and phonons. This new edition reflects these new developments, and it includes discussions of natural quasicrystals, incommensurate magnetic and multiferroic structures, photonic and mesoscopic quasicrystals. The second edition also includes a number of new exercises that give the reader an opportunityt to check their understanding of the material.
This book gives a detailed description on mathematical theory of elasticity and generalized dynamics of solid quasicrystals and its applications.The Chinese edition of the book Mathematical Theory of Elasticity of Quasicrystals and Its Applications was published by the Beijing Institute of Technology Press in 1999, written by Prof Tian-You Fan. In this English edition of the book, the phonon-phason dynamics, defect dynamics and hydrodynamics of solid quasicrystals are included, so the scope of the book is beyond elasticity. Hence, the title in this edition is changed to Mathematical Theory of Elasticity and Generalized Dynamics of Quasicrystals and Its Applications. This book is the first and only monograph in the scope of quasicrystals since first published in 1999 in China and worldwide. In this edition, the two-dimensional quasicrystals of second kind, soft-matter quasicrystals and photonic bade-gap and application of photonic quasicrystals are added.This book combines the mechanical and physical behavior of quasicrystals and mathematical physics, which may help graduate students and researchers in the fields of new materials, condensed matter physics, applied mathematics and engineering science.
"Highlights in Mineralogical Crystallography" presents a collection of review articles with the common topic: structural properties of minerals and synthetic analogues. It is a valuable resource for mineralogists, materials scientists, crystallographers, and earth scientists. This book includes: An introduction to the RRUFF database for structural, spectroscopic, and chemical mineral identification. A systematic evaluation of structural complexity of minerals. ab initio computer modelling of mineral surfaces. Natural quasicrystals of meteoritic origin. The potential role of terrestrial ringwoodite on the water content of the Earth's mantle. Structural characterization of nanocrystalline bio-related minerals by electron-diffraction tomography. The uniqueness of mayenite-type compounds as minerals and high-tech ceramics.