Download Free Natural Products And Brain Energy Metabolism Astrocytes In Neurodegenerative Diseases Volume I Book in PDF and EPUB Free Download. You can read online Natural Products And Brain Energy Metabolism Astrocytes In Neurodegenerative Diseases Volume I and write the review.

Brain Energy Metabolism addresses its challenging subject by presenting diverse technologies allowing for the investigation of brain energy metabolism on different levels of complexity. Model systems are discussed, starting from the reductionist approach like primary cell cultures which allow assessing of the properties and functions of a single brain cell type with many different types of analysis, however, at the expense of neglecting the interaction between cell types in the brain. On the other end, analysis in animals and humans in vivo is discussed, maintaining the full complexity of the tissue and the organism but making high demands on the methods of analysis. Written for the popular Neuromethods series, chapters include the kind of detailed description and key implementation advice that aims to support reproducible results in the lab. Meticulous and authoritative, Brain Energy Metabolism provides an ideal guide for researchers interested in brain energy metabolism with the hope of stimulating more research in this exciting and very important field.
With the contribution from more than one hundred CNS neurotrauma experts, this book provides a comprehensive and up-to-date account on the latest developments in the area of neurotrauma including biomarker studies, experimental models, diagnostic methods, and neurotherapeutic intervention strategies in brain injury research. It discusses neurotrauma mechanisms, biomarker discovery, and neurocognitive and neurobehavioral deficits. Also included are medical interventions and recent neurotherapeutics used in the area of brain injury that have been translated to the area of rehabilitation research. In addition, a section is devoted to models of milder CNS injury, including sports injuries.
This volume discusses current research on glial-neuronal interactions in several neuroendocrine systems. Glial-neuronal bidirectional transmission represents one of the fastest-growing areas of investigation in neuroscience today. Unraveling the interactions and signaling synergy between glial cells and neurons is critical to advancing our understanding of brain function. Consequently, this book summarizes the latest findings on the roles of astrocytes, microglia and tanycytes in the control of synaptic transmission, synaptic plasticity, blood-brain signaling, neuroinflammation and immune signaling. In addition, leading experts in the field discuss how reproductive function, the stress response and energy homeostasis are regulated by glial-neuronal communication. Given its scope, the book is essential reading for undergraduate and graduate students in the neurosciences, as well as postdoctoral fellows and established researchers who are looking for a comprehensive overview of glial-neuronal crosstalk in neuroendocrine systems. This is the eleventh volume in the International Neuroendocrine Federation (INF) Masterclass in Neuroendocrinology series (Volumes 1-7 published by Wiley), which aims to illustrate the highest standards and highlight the latest technologies in basic and clinical research, and aspires to provide inspiration for further exploration into the exciting field of neuroendocrinology.
The editor of this volume, having research interests in the field of ROS production and the damage to cellular systems, has identified a number of enzymes showing ·OH scavenging activities details of which are anticipated to be published in the near future as confirmatory experiments are awaited. It is hoped that the information presented in this book on NDs will stimulate both expert and novice researchers in the field with excellent overviews of the current status of research and pointers to future research goals. Clinicians, nurses as well as families and caregivers should also benefit from the material presented in handling and treating their specialised cases. Also the insights gained should be valuable for further understanding of the diseases at molecular levels and should lead to development of new biomarkers, novel diagnostic tools and more effective therapeutic drugs to treat the clinical problems raised by these devastating diseases.
Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.
Fundamental biochemical studies of basic brain metabolism focusing on the neuroactive amino acids glutamate and GABA combined with the seminal observation that one of the key enzymes, glutamine synthetase is localized in astroglial cells but not in neurons resulted in the formulation of the term “The Glutamate-Glutamine Cycle.” In this cycle glutamate released from neurons is taken up by surrounding astrocytes, amidated by the action of glutamine synthetase to glutamine which can be transferred back to the neurons. The conversion of glutamate to glutamine is like a stealth technology, hiding the glutamate molecule which would be highly toxic to neurons due to its excitotoxic action. This series of reactions require the concerted and precise interaction of a number of enzymes and plasma membrane transporters, and this volume provides in-depth descriptions of these processes. Obviously such a series of complicated reactions may well be prone to malfunction and therefore neurological diseases are likely to be associated with such malfunction of the enzymes and transporters involved in the cycle. These aspects are also discussed in several chapters of the book. A number of leading experts in neuroscience including intermediary metabolism, enzymology and transporter physiology have contributed to this book which provides comprehensive discussions of these different aspects of the functional importance of the glutamate-glutamine cycle coupling homeostasis of glutamatergic, excitatory neurotransmission to basic aspects of brain energy metabolism. This book will be of particular importance for students as well as professionals interested in these fundamental processes involved in brain function and dysfunction.
The focus of this collection of illustrated reviews is to discuss the systems biology of free radicals and anti-oxidants. Free radical induced cellular damage in a variety of tissues and organs is reviewed, with detailed discussion of molecular and cellular mechanisms. The collection is aimed at those new to the field, as well as clinicians and scientists with long standing interests in free radical biology. A feature of this collection is that the material also brings insights into various diseases where free radicals are thought to play a role. There is extensive discussion of the success and limitations of the use of antioxidants in several clinical settings.
This book highlights the pathophysiological complexities of the mechanisms and factors that are likely to be involved in a range of neuroinflammatory and neurodegenerative diseases including Alzheimer's disease, other Dementia, Parkinson Diseases and Multiple Sclerosis. The spectrum of diverse factors involved in neurodegeneration, such as protein aggregation, oxidative stress, caspases and secretase, regulators, cholesterol, zinc, microglia, astrocytes, oligodendrocytes, etc, have been discussed in the context of disease progression. In addition, novel approaches to therapeutic interventions have also been presented. It is hoped that students, scientists and clinicians shall find this very informative book immensely useful and thought-provoking.
The purpose of this monograph is to present readers with a comprehensive and cutting edge description of neurochemical effects of diet (beneficial and harmful effects) in normal human brain and to discuss how present day diet promotes pathogenesis of stroke, AD, PD, and depression in a manner that is useful not only to students and teachers but also to researchers, dietitians, nutritionists and physicians. A diet in sufficient amount and appropriate macronutrients is essential for optimal health of human body tissues. In brain, over-nutrition, particularly with high-calorie diet, not only alters cellular homeostasis, but also results in changes in the intensity of signal transduction processes in reward centers of the brain resulting in food addiction. Over-nutrition produces detrimental effects on human health in general and brain health in particular because it chronically increases the systemic and brain inflammation and oxidative stress along with induction of insulin resistance and leptin resistance in the brain as well as visceral organs. Onset of chronic inflammation and oxidative stress not only leads to obesity and heart disease, but also promotes type II diabetes and metabolic syndrome, which are risk factors for both acute neural trauma (stroke) and chronic age-related neurodegenerative and neuropsychological disorders, such as Alzheimer disease (AD), Parkinson disease (PD) and depression.